College of the Holy Cross, Fall Semester, 2004 Math 131, Midterm 2 Solutions

1. [5 points each] Compute the following derivatives. You may use any correct method.
(a) $\frac{d}{d x}\left(5 x \sqrt{x}-\frac{2}{x^{3}}+11 x-4\right)$

Solution First rewrite $x \sqrt{x}=x^{3 / 2}$ and $\frac{2}{x^{3}}=2 x^{-3}$. Then by the power rule,

$$
\frac{d}{d x}\left(5 x^{3 / 2}-2 x^{-3}+11 x-4\right)=\frac{15}{2} x^{1 / 2}+6 x^{-4}+11 .
$$

(b) $\frac{d}{d t}\left(t^{2} e^{-5 t}\right)$

Solution By the product rule,

$$
\frac{d}{d t}\left(t^{2} e^{-5 t}\right)=t^{2} \frac{d}{d t}\left(e^{-5 t}\right)+e^{-5 t} \frac{d}{d t}\left(t^{2}\right)
$$

Using the chain rule on the first term, this equals

$$
t^{2} e^{-5 t}(-5)+e^{-5 t}(2 t)
$$

which simplifies to $\left(2 t-5 t^{2}\right) e^{-5 t}$.
(c) $\frac{d}{d z} 8\left(z^{2}+4 \cos z+2\right)^{3}$

Solution By the chain rule,

$$
\frac{d}{d z} 8\left(z^{2}+4 \cos z+2\right)^{3}=24\left(z^{2}+4 \cos z+2\right)^{2}(2 z-4 \sin z)
$$

(d) $\frac{d}{d x}\left(\frac{x}{\sin x}\right)$

Solution By the quotient rule,

$$
\frac{d}{d x}\left(\frac{x}{\sin x}\right)=\frac{\sin x-x \cos x}{\sin ^{2} x}
$$

2. [15 points] The graph of a function f is shown below with several points marked. Check the appropriate boxes.

3. [5 points each] Compute the indicated limits. Show all work for full credit.
(a) $\lim _{x \rightarrow 1} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}$

Solution Since $\lim _{x \rightarrow 1} x^{2}-4 x+4=1 \neq 0$,

$$
\lim _{x \rightarrow 1} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}=\frac{\lim _{x \rightarrow 1} 3 x^{2}-5 x-2}{\lim _{x \rightarrow 1} x^{2}-4 x+4}=\frac{-4}{1}=-4
$$

(b) $\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}$

Solution Since $\lim _{x \rightarrow 2} 3 x^{2}-5 x-2=0$ and $\lim _{x \rightarrow 2} x^{2}-4 x+4=0$, we cannot just "plug in" to compute the limit. Factoring gives

$$
\frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}=\frac{(x-2)(3 x+1)}{(x-2)^{2}}=\frac{3 x+1}{x-2} \quad \text { for } x \neq 2
$$

The resulting function $\frac{3 x+1}{x-2}$ has a vertical asymptote at $x=2$ since $x=2$ is a root of the denominator and not a root of the numerator. Consequently

$$
\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{x^{2}-4 x+4}=\lim _{x \rightarrow 2} \frac{3 x+1}{x-2}
$$

does not exist.
(c) $\lim _{x \rightarrow 1^{-}} 3 \cdot \frac{x-1}{|x-1|}+1$

Solution For $x<1, x-1<0$ so $|x-1|=-(x-1)$ and therefore

$$
3 \cdot \frac{x-1}{|x-1|}+1=3 \cdot \frac{x-1}{-(x-1)}+1=-3+1=-2
$$

so

$$
\lim _{x \rightarrow 1^{-}} 3 \cdot \frac{x-1}{|x-1|}+1=-2
$$

4. [5 points each] Each part refers to the graph shown.

(a) Find all intervals on which $f(x)>0$.

Solution The graph lies above the x-axis between B and E, so $f(x)>0$ for $B<x<E$.
(b) Find all intervals on which $f^{\prime}(x)>0$.

Solution The function is increasing from A to D, so $f^{\prime}(x)>0$ for $A<x<D$.
(c) Find all intervals on which $f^{\prime \prime}(x)>0$.

Solution The graph is concave up from B to C, so $f^{\prime \prime}(x)>0$ for $B<x<C$.
5. (a) [5 points] State the limit definition of the derivative $f^{\prime}(x)$.

Solution

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(b) [10 points] Use the definition to compute the derivative function of $f(x)=\frac{1}{3 x}$.

Solution

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{3(x+h)}-\frac{1}{3 x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{3 x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{3 x h(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{3 x(x+h)} \\
& =-\frac{1}{3 x^{2}}
\end{aligned}
$$

(c) [5 points] Find the tangent line to the graph of $f(x)=\frac{1}{3 x}$ at $x=2$.

Solution By part (b), the slope of the tangent line at $x=2$ is $f^{\prime}(2)=-\frac{1}{3(2)^{2}}=$ $-\frac{1}{12}$. Since $f(2)=\frac{1}{6}$, the line passes through the point $\left(2, \frac{1}{6}\right)$. Its equation is therefore

$$
y-\frac{1}{6}=-\frac{1}{12}(x-2)
$$

by the point-slope formula.
6. [15 points] The world's population is about $P(t)=6 e^{0.013 t}$ billion people, with t measured in years since 1999. Find $P^{\prime}(17)$. Write a sentence or two explaining the meaning of your answer; be sure to include a discussion of units.

Solution By the chain rule

$$
P^{\prime}(t)=6 e^{0.013 t} \cdot(0.013)
$$

so $P^{\prime}(17)=6 e^{0.013(17)} \cdot(0.013) \approx 0.0973$. This means that in 2016 the world population will be growing at a rate of about 97.3 million people per year.

