College of the Holy Cross, Fall Semester, 2004 Math 131, Midterm 1 Solutions

1. [5 points each] The graph $y=f(x)$ and four graphs obtained by transforming it are shown. Match the given formulas with the corresponding graph. Note that there is an extra graph.

(a) $y=f(2 x):$ (iii)
(b) $y=\frac{1}{2} f(x):$ (i)
(c) $y=\frac{1}{2}-f(x)$:

Graph (iv) has equation $y=f\left(\frac{1}{2} x\right)$.

2. [20 points] The desert temperature H varies sinusoidally from a high of $80^{\circ} \mathrm{F}$ at 5 PM to a low of $40^{\circ} \mathrm{F}$ at 5 AM . Find a formula for H as a function of t, with t measured in hours from 5 PM. You may use the graph below for reference; it's a good idea to start by labeling the vertical and horizontal scales.

Solution Because $t=0$ at a "crest" (the temperature is maximum), we seek a function of the form $H(t)=D+A \cos (B t)$ with $A>0$ the amplitude of oscillation. The maximum minus minimum is $40=2 A$, so $A=20$. The vertical shift D is the halfways point between the extremes, so $D=\frac{1}{2}(80+40)=60$. Finally, the period is 24 hours, so $B=2 \pi / 24=\pi / 12$. In summary

$$
H(t)=60+20 \cos \left(\frac{\pi t}{12}\right)
$$

3. [10 points each] In each part, fill in the table as indicated.
(a) Assuming f is a linear function.

Solution The line through the points $(-1,24)$ and $(1,12)$ has slope

$$
m=(24-12) /(-1-1)=12 /-2=-6
$$

The point-slope form of the equation is $(y-12)=-6(x-1)$, which simplifies to $y=18-6 x$. To fill in the table, set $x=5$ and $x=10$:

x	-1	1	5	10
$f(x)$	24	12	-12	-42

(b) Assuming f is an exponential function.

Solution Here we are told to assume $f(x)=P_{0} a^{x}$. Using the values provided gives two equations,

$$
24=P_{0} a^{-1}, \quad 12=P_{0} a .
$$

Dividing the first equation by the second cancels $P_{0}: 2=24 / 12=a^{-1} / a=a^{-2}$, or $a=2^{-1 / 2}$. Next, we plug this value into one of the equations (say the first) and solve for P_{0} : Since $24=P_{0} a^{-1}$, we have $P_{0}=24 a=24 / \sqrt{2}=12 \sqrt{2}$. Thus

$$
f(x)=P_{0} a^{x}=(12 \sqrt{2}) 2^{-x / 2}
$$

As above, we fill in the table by setting $x=5$ and $x=10$.

x	-1	1	5	10
$f(x)$	24	12	3	$\frac{3 \sqrt{2}}{8} \simeq 0.53$

4. [10 points] Find the polynomial whose graph is shown; express your answer in both factored and expanded (multiplied out) form.

Solution We have $p(x)=k(x+1)^{2}(x-3)$. Since $p(0)=6$, we find that $6=k(1)^{2}(-3)$, or $k=-2$. Thus,

$$
\begin{aligned}
p(x) & =-2(x+1)^{2}(x-3) \quad(\text { factored }) \\
& =-2\left(x^{2}+2 x+1\right)(x-3) \\
& =-2\left(x^{3}-x^{2}-5 x-3\right) \\
& =-2 x^{3}+2 x^{2}+10 x+6 . \quad \text { (expanded) }
\end{aligned}
$$

5. [10 points each] Let $y=f(x)=x^{2}-3$ for $x \geq 0$.
(a) Find the inverse function in the form $y=f^{-1}(x)$, and find the domain of f^{-1}.

Solution Formally, exchange x and y, obtaining $x=y^{2}-3$, then solve for y. This gives $y= \pm \sqrt{x+3}$. To see whether we need a negative sign or not, it's easiest to consider the graph:
$y=f(x)$

We conclude that $y=f^{-1}(x)=\sqrt{x+3}$.
(b) Suppose $g(x)=x+e^{x}$. With $f(x)$ as above, find $g(f(x))$.

Solution $g(f(x))=g\left(x^{2}-3\right)=\left(x^{2}-3\right)+e^{\left(x^{2}-3\right)}$.
6. [15 points] An automobile costs $\$ 25,000$ and depreciates in value by 20% per year. How many years pass before the car is worth $\$ 5000$? Give both an exact answer (using fractions, square roots, logarithms, etc. as needed) and a numerical answer rounded to two decimal places.

Solution Let $V(t)$ be the value of the car in thousands of dollars after t years. (Note the explicit choice of units. This should be your first step when creating a mathematical model!) Because $V(0)=25$ and V decreases to 0.8 times its current value after 1 year, we have

$$
V(t)=25(0.8)^{t}
$$

The problem asks for the value T so that $V(T)=25(0.8)^{T}=5$. Dividing by 25 and taking natural logarithms gives

$$
(0.8)^{T}=0.2, \quad T \ln (0.8)=\ln (0.2), \quad T=\frac{\ln (0.2)}{\ln (0.8)} \simeq 7.21 \text { years }
$$

