Mathematics 131 - Calculus for Physical and Life Sciences 1
Practice Final Examination
December 10, 2004
I.

- A) Give a possible formula for the function plotted here:

- B) Does the function from part A have an inverse function if x is restricted to the interval $0 \leq x \leq 1$? If so, say why and give the domain of the inverse function. If not, say why not.
II. The function plotted here is a rational function with numerator and denominator both polynomials of degree 2 or less. Find a possible formula.

III. One of the functions tabulated below is approximately linear and the other is approximately exponential. Say which is which and give a formula for either one (your choice).

x	.2	.4	.6	.8	1.0
$f(x)$	2.30	2.51	2.72	2.93	3.14
$g(x)$	2.30	2.42	2.55	2.69	2.84

IV. A cup of hot chocolate is set out on a counter at $t=0$. The temperature of the chocolate t minutes later is $70+80 e^{-t / 3}$ (in degrees F).

- A) What is the temperature of the chocolate at $t=0$?
- B) How fast is the temperature changing at $t=10$ (give units).
- C) How long does it take for the temperature to reach $100^{\circ} \mathrm{F}$?
V.
- A) Using the limit definition, compute $f^{\prime}(x)$ for $f(x)=\frac{1}{x+1}$. Using appropriate derivative rules, compute the derivatives of the following functions:
- B) $g(x)=3 x^{4}+\frac{3}{\sqrt{x}}+2 \sqrt[3]{x}+\pi^{2}$.
- C) $g(x)=\frac{\tan (x)+x}{\cos (2 x)}$
- D) $i(x)=3 \ln \left(x^{2}+3^{x}\right)$
- E) $j(x)=\arcsin (12 x+2)$
VI.
- A) Give parametric equations for the circle of radius 2 centered at $(0,0)$, traversed counterclockwise with constant speed 1.
- B) An object moves along the path given by your parametric curve in part A. Give a function of t that computes the object's distance from the point $(1,3)$ at each time t.
VII. The following graph shows the derivative $f^{\prime}(x)$ for some function $f(x)$ defined on $-3 / 2 \leq$ $x \leq 3 / 2$.

Using the graph, estimate

- A) The intervals on which f is increasing.
- B) The critical points of $f(x)$. Say what the type (local max, local min, neither) of each critical point is.
- C) The intervals on which $y=f(x)$ is concave up.
- D) The locations of the inflection points of $y=f(x)$.
VIII. Note: The actual exam will have only one of this type of problem!
- A) A window is to be made of a single large piece of glass in the shape of a semicircle on top of a rectangle (the diameter of the semicircle is the same as the width of the rectangle). The perimeter of the window is 30 ft . What dimensions will maximize the total area of the window (and the light admitted)?
- B) A town wants to build a water pumping station on a small island 2 miles from the straight shoreline of the lake that forms its water reservoir. The town is 6 miles along the shore from the point nearest to the island. The town must be connected to the pumping station by a pipeline made up of straight line segments. It costs $\$ 3$ million per mile to lay pipe under the water and $\$ 2$ million per mile to lay pipe along the shoreline. Where along the shoreline should the pipeline hit land to minimize the costs of construction?
IX. Note: The actual exam will have only one of this type of problem!
- A) A rocket rises vertically from a point on the ground that is 100 m from an observer at ground level. When the angle of elevation of the rocket is $2 \pi / 3$, the angle of elevation is increasing at a rate of $2 \pi / 15$ radians per second. How fast is the rocket moving at that time?
- B) An oil spill from a tanker accident has happened in Pristine Bay. The slick has the form of a (short) circular cylinder floating on the water surface. Oil-eating bacteria are being used to contain the slick, and they are gobbling $5 \mathrm{ft}^{3}$ of oil per hour. When the radius of the slick is 500 ft , the thickness is .01 ft and the thickness is decreasing at a rate of $.001 \mathrm{ft} / \mathrm{hour}$. How is the radius of the slick changing at that time?
X. This is the graph $y=f(x)$, made up of straight line segments and a semicircle:

- A) Use left- and right-hand sums with $\Delta x=2$ to estimate $\int_{-5}^{5} f(x) d x$.
- B) Using the relation between the integral and area, find the exact value of $\int_{-5}^{5} f(x) d x$.

