Solutions

1. Solve for $x: 3 x^{2}-21 x+30=0$.

Method 1 (easier): Factoring, we see $3 x^{2}-21 x+30=3(x-2)(x-5)$. This equals zero only when one of the factors is zero. $3 \neq 0$, so the roots are given by

$$
\begin{aligned}
& x-2=0 \Rightarrow x=2, \text { or } \\
& x-5=0 \Rightarrow x=5 .
\end{aligned}
$$

Method 2 (more calculation): Use the quadratic formula: $a x^{2}+b x+c=0$ has roots

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Here $a=3, b=-21, c=30$, so

$$
x=\frac{21 \pm \sqrt{441-4(3)(30)}}{6}=\frac{21 \pm \sqrt{81}}{6}=\frac{21+9}{6}, \frac{21-9}{6}=5,2 .
$$

Note: You could also factor out the 3, then apply the quadratic formula.
2. Let $f(x)=\sqrt{x-1}$ and $g(x)=x^{3}+1$. Find $f(g(x))$? What is the domain of $f(g(x))$?

$$
f(g(x))=\sqrt{g(x)-1}=\sqrt{\left(x^{3}+1\right)-1}=\sqrt{x^{3}}=x^{3 / 2}
$$

The domain of a function defined this way is taken to be the biggest set of real numbers you can substitute into the formula and get a well-defined result. Here, we can't take the square root of a negative number and get a real value, so $x^{3} \geq 0$ is necessary. This is the same as $x \geq 0$. The domain is the set of all $x \geq 0$ in the real numbers.
3. Simplify and express as a single fraction:

$$
\frac{\frac{x}{\sqrt{x+1}}+\sqrt{x+1}}{\frac{x}{x^{2}+3}}
$$

First we rewrite the fraction as multiplying by the reciprocal of the denominator, then put the terms in the numerator over a common denominator so they can be added, then finally
combine:

$$
\begin{aligned}
\frac{x}{\sqrt{x+1}}+\sqrt{x+1} & \frac{x}{x^{2}+3}
\end{aligned}=\left(\frac{x}{\sqrt{x+1}}+\sqrt{x+1}\right) \cdot\left(\frac{x^{2}+3}{x}\right)
$$

(Many other forms possible too.)
4. Let $f(x)=x^{2}+2 x$. Compute and simplify: $f(2+h)-f(2-h)$.

In an expression like $f(2+h)$, we take the "inside" (the $2+h$) and substitute that in for x everywhere in the definition of the function:

$$
f(2+h)-f(2-h)=\left[(2+h)^{2}+2(2+h)\right]-\left[(2-h)^{2}+2(2-h)\right]
$$

Now expand, collect like powers and simplify:

$$
\begin{aligned}
{\left[(2+h)^{2}+2(2+h)\right]-\left[(2-h)^{2}+2(2-h)\right] } & =\left[4+4 h+h^{2}+4+2 h\right]-\left[4-4 h+h^{2}+4-2 h\right] \\
& =\left[8+6 h+h^{2}\right]-\left[8-6 h+h^{2}\right] \\
& =12 h
\end{aligned}
$$

