College of the Holy Cross, Spring Semester, 2005
 Math 132, Midterm 3 Solutions

April 27, 2005

1. [5 points each] Suppose $f(0)=0.5, f^{\prime}(0)=-1$ and $f^{\prime \prime}(0)=-2$.
(a) Write down the Taylor polynomial of degree 2 for f near $a=0$.

Solution: The polynomial is

$$
p_{2}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}=0.5-x-x^{2}
$$

(b) Use your answer to part (a) to estimate $f(0.3)$.

Solution: Substitute $x=0.3$ in $p_{2}(x)$:

$$
p_{2}(0.3)=0.5-0.3-(0.3)^{2}=.11
$$

(c) Which (if any) of the following could be the graph of f ? (Recall that $f(0)=0.5$, $f^{\prime}(0)=-1$ and $f^{\prime \prime}(0)=-2$. More than one answer may be correct.)
\bigcirc (ii)

(i)

(ii)

(iii)

(iv)

Solution: At $a=0$, the function should be positive $(f(0)>0)$, decreasing $\left(f^{\prime}(0)<0\right)$, and concave down $\left(f^{\prime \prime}(0)<0\right)$. Only (ii) is all three.
2. [10 points] Evaluate (find the sum of) the series $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\frac{80}{81}-\cdots$

Solution: This is a geometric series with $a=5$ and $r=\frac{-2}{3}$. Since $-1<r<1$, the series is convergent and the sum is

$$
\frac{a}{1-r}=\frac{5}{1+\frac{2}{3}}=3
$$

3. [10 points] Use the power series for e^{x} about $a=0$ to find the power series for $z e^{-z^{2}}$ about $a=0$. Express your answer both in summation form, and by writing out the first four nonzero terms.
Solution: The Taylor series for e^{x} about $a=0$ is

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

To get the series for $z e^{-z^{2}}$, we substitute $x=-z^{2}$, and multiply the result by z to obtain:

$$
z \sum_{k=0}^{\infty} \frac{\left(-z^{2}\right)^{k}}{k!}=z \sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k}}{k!}=\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k+1}}{k!}
$$

The first four nonzero terms are

$$
z-z^{3}+\frac{z^{5}}{2!}-\frac{z^{7}}{3!} .
$$

4. The distribution of length in a certain population of inchworms is described by the pdf $p(x)=c\left(3 x^{2}-x^{3}\right)$ for $0 \leq x \leq 3$.
(a) [8 points] Find the value of the constant c.

Solution: The total area under the graph of a density must be 1 , so

$$
\begin{aligned}
1 & =c \int_{0}^{3} 3 x^{2}-x^{3} d x \\
& =c\left(x^{3}-\left.\frac{x^{4}}{4}\right|_{0} ^{3}\right. \\
& =c \frac{27}{4} \\
\Rightarrow c & =\frac{4}{27}
\end{aligned}
$$

(b) [7 points] Find the proportion of inchworms with length at most 2 cm .

Solution: This proportion is computed by the integral $\int_{0}^{2} p(x) d x$, which is $\frac{4}{27} \int_{0}^{2} 3 x^{2}-x^{3} d x=\frac{16}{27} \doteq .593$ (about 59.3% of the inchworms).
5. [5 points each] Use the indicated test to determine whether the given series converges or diverges. Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+10}$; integral test

Solution: We apply the substitution $u=x^{3}+10$ to the integral

$$
\int \frac{x^{2} d x}{x^{3}+10}=\int \frac{\frac{1}{3} d u}{u}=\frac{1}{3} \ln (u)=\frac{1}{3} \ln \left(x^{3}+10\right)+C .
$$

Then $\int_{1}^{b} \frac{x^{2} d x}{x^{3}+10}=\ln \left(b^{3}+10\right)-\ln (11)$. Taking $\lim _{b \rightarrow \infty} \ln \left(b^{3}+10\right)-\ln (11)$, we do not get a finite value so the integral diverges, and so does the series.
\bigcirc Diverges
(b) $\sum_{n=1}^{\infty} \frac{n}{4 n^{3}+3 n^{2}+5}$; comparison test

Solution: For all $n \geq 1$:

$$
\frac{n}{4 n^{3}+3 n^{2}+5}<\frac{n}{4 n^{3}}=\frac{1}{4 n^{2}}<\frac{1}{n^{2}}
$$

The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is the p-series with $p=2>1$. Hence it is convergent. By the comparison test, the given series converges too.
\bigcirc Converges
6. [15 points] Let $f(x)=\sqrt{x}$. Use the definition to calculate its Taylor polynomial of degree 3 at $a=1$.
Solution: We have $f(1)=1$. $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$, so $f^{\prime}(1)=\frac{1}{2} . f^{\prime \prime}(x)=\frac{-1}{4} x^{-3 / 2}$, so $f^{\prime \prime}(1)=\frac{-1}{4}$. Finally, $f^{\prime \prime \prime}(x)=\frac{3}{8} x^{-5 / 2}$, so $f^{\prime \prime \prime}(1)=\frac{3}{8}$. The Taylor polynomial is
$f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{6}(x-1)^{3}=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}$.
7. Both parts refer to the power series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n \cdot 5^{n}}$.
(a) [10 points] Use the ratio test to find the radius of convergence.

Solution:

$$
\lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{(n+1) \cdot 5^{n+1}} \cdot \frac{n \cdot 5^{n}}{(x-1)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot \frac{1}{5} \cdot|x-1|=\frac{1}{5}|x-1|
$$

So the radius of convergence is $R=\frac{1}{\frac{1}{5}}=5$.
(b) [5 points] Investigate the endpoint behavior, and determine the interval of convergence.
Solution: At $x=1+R=6, \sum_{n=1}^{\infty} \frac{(6-1)^{n}}{n \cdot 5^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$. This is the harmonic series $(p$ series with $p=1$). So it diverges. At $x=1-R=-4$, we get $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$, which converges by the alternating series test. The interval of convergence is $-4 \leq x<6$.
8. [5 points each] Suppose

$$
p(x)=\frac{4}{\pi} \cdot \frac{1}{1+x^{2}}
$$

is the probability density function for the quantity x, for $0 \leq x \leq 1$.
(a) Find the mean of x.

Solution: The mean is given by

$$
\int_{-\infty}^{\infty} x p(x) d x=\frac{4}{\pi} \int_{0}^{1} \frac{x}{1+x^{2}} d x=\left.\frac{4}{\pi} \cdot \frac{1}{2} \ln \left(1+x^{2}\right)\right|_{0} ^{1}=\frac{2 \ln (2)}{\pi} \doteq .4413
$$

(b) Find the median of x.

Solution: The median is the t such that

$$
\frac{1}{2}=\frac{4}{\pi} \int_{0}^{t} \frac{d x}{1+x^{2}}=\arctan (t)
$$

This says

$$
\arctan (t)=\frac{\pi}{8}
$$

or $t=\tan \left(\frac{\pi}{8}\right)=\doteq .4142$.

