College of the Holy Cross, Fall Semester, 2004

Math 132, Midterm 1 Solutions (All Sections)

1. [5 points each] Compute the following:
(a) $\int 2 x\left(x^{2}+5\right)^{7 / 2} d x$

Solution Substitute for the function inside the power: $u=x^{2}+5$. Then $d u=2 x d x$ and the integral becomes $\int u^{7 / 2} d u$. By the Power Rule, this equals

$$
\frac{2}{9} u^{9 / 2}+C=\frac{2}{9}\left(x^{2}+5\right)^{9 / 2}+C
$$

(b) $\int \sin (3 \theta) d \theta$

Solution Substitute for the function inside the sine: let $u=3 \theta$. Then $d u=3 d \theta$ and the integral is

$$
\frac{1}{3} \int \sin (u) d u=-\frac{1}{3} \cos (u)+C=-\frac{1}{3} \cos (3 \theta)+C
$$

(c) $\int \frac{d x}{2 x+1}$

Solution In this integral, if we let u be the denominator $u=2 x+1$, then $d u=2 d x$ and the integral becomes

$$
\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln |2 x+1|+C
$$

(d) $F^{\prime}(x)$, where $F(x)=\int_{\pi}^{x} \frac{t}{1+\sin ^{2} t} d t$

Solution For this problem, we use the second Fundamental Theorem of Calculus, which says that if $f(t)$ is continuous on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) d t$, then

$$
F^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Applying this here, we get $F^{\prime}(x)=\frac{x}{1+\sin ^{2} x}$
2. [10 points] The graph $y=f(x)$ is shown. Let F be the antiderivative of f satisfying $F(2)=0$. Find the indicated values, and carefully sketch the graph $y=F(x)$ in the grid provided.

$$
F(1)=\ldots \quad F(3)=_\quad F(4)=\ldots
$$

Solution By the first part of the Fundamental Theorem of Calculus, and the information given in the graph of $y=f(x)$ about areas between the graph and the x-axis,

$$
\begin{aligned}
5 & =\int_{1}^{2} f(x) d x=F(2)-F(1)=0-F(1) \Rightarrow F(1)=-5 \\
6.25 & =\int_{2}^{3} f(x) d x=F(3)-F(2)=F(3)-0 \Rightarrow F(3)=6.25 \\
-6.25 & =\int_{3}^{4} f(x) d x=F(4)-F(3)=F(4)-6.25 \Rightarrow F(4)=0 \\
-10 & =\int_{4}^{6} f(x) d x=F(6)-F(4)=F(6)-0 \Rightarrow F(6)=-10
\end{aligned}
$$

Similarly, we get

$$
-5=\int_{0}^{1} f(x) d x=F(1)-F(0)=-5-F(0) \Rightarrow F(0)=0
$$

$F(x)$ is increasing on intervals where $f(x)$ is positive and decreasing on intervals where $f(x)$ is negative. It is concave up on intervals where $f(x)$ is increasing and concave down on intervals where $f(x)$ is decreasing. $F(x)$ has critical points when $f(x)=0$. The graph $y=F(x)$ is shown on the next page.

3. [5 points each] A drag racer accelerates at $a(t)=(20+t) \mathrm{ft} / \mathrm{sec}^{2}$.
(a) How fast is the car traveling after 6 seconds? (The car is initially at rest.)

Solution The acceleration is not constant, so the book formulas $v(t)=v_{0}+a t$ and $x(t)=v_{0} t+\frac{1}{2} a t^{2}$ do not apply. The velocity is the integral of the acceleration:

$$
v(t)=\int(20+t) d t=20 t+\frac{t^{2}}{2}+C
$$

Since the car starts from rest, $v(0)=0$, or $C=0$. The velocity at time $t=6$ is $v(6)=120+\frac{36}{2}=138 \mathrm{ft} / \mathrm{sec}$
(b) How far has the car traveled after 6 seconds?

Solution For this we need the position $s(t)$ of the car as a function of time. The position will be the integral of the velocity, so

$$
s(t)=\int\left[20 t+\frac{t^{2}}{2}\right] d t=10 t^{2}+\frac{t^{3}}{6}+C
$$

for some constant. Now we may as well measure distances from the starting position of the car, so we can take $s(0)=0$ also. This means this constant of integration is also zero: $C=0$. Then the distance traveled by the car after 6 seconds is

$$
s(6)-s(0)=360+36=396 \mathrm{ft}
$$

Note: we could also set up this part as computing the definite integral $\int_{0}^{6} v(t) d t$.
4. [10 points each] Find the integrals. Use the indicated method to get started.
(a) $\int_{1}^{4} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} d x$ (Substitution)

Solution We substitute $u=1+\sqrt{x}$, so $d u=\frac{1}{2 \sqrt{x}} d x$. Converting the limits of integration as well ($x=1$ gives $u=2$ and $x=4$ gives $u=1+\sqrt{4}=3$), we get:

$$
\int_{1}^{4} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} d x=2 \int_{2}^{3} \sqrt{u} d u=\left.\frac{4}{3} u^{3 / 2}\right|_{2} ^{3}=\frac{4}{3}(3 \sqrt{3}-2 \sqrt{2}) \simeq 3.157 \ldots
$$

(b) $\int t \sec ^{2} t d t$ (Integration by parts)

Solution The good choice here is to let $u=t$ and $d v=\sec ^{2} t$. Then $d u=d t$ and $v=\tan t$. The parts formula gives

$$
\int t \sec ^{2} t d t=t \tan t-\int \tan t d t=t \tan t+\ln |\cos t|+C
$$

(For the last step, either use Formula 7 in the table or notice that $\tan t=\frac{\sin t}{\cos t}$ so the remaining integral has the form $-\int \frac{d w}{w}$ for $w=\cos t$.)
5. [10 points each] Compute the integrals
(a) $\int \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}$

Solution The $\left(4-x^{2}\right)^{3 / 2}$ in the integrand indicates that we want the trigonometric substitution $x=2 \sin \theta$. Then $d x=2 \cos \theta d \theta$, and the integral becomes

$$
\int \frac{d x}{\left(4-x^{2}\right)^{3 / 2}}=\int \frac{2 \cos \theta d \theta}{8 \cos ^{3} \theta}=\frac{1}{4} \int \frac{1}{\cos ^{2} \theta} d \theta=\frac{1}{4} \tan \theta+C=\frac{1}{4} \frac{x}{\sqrt{4-x^{2}}}+C
$$

The integral may be done either with Differentiation Formula 12 or Integral Formula 21 with $n=2$. For the last step, converting back to functions of x, use the triangle with side opposite θ equal to x and hypotenuse 2 . The adjacent side is $\sqrt{4-x^{2}}$.
(b) $\int \frac{d x}{x^{2}+4 x+8}$

Solution Complete the square in the denominator: $x^{2}+4 x+8=(x+2)^{2}+4$. Then

$$
\begin{array}{rlrl}
\int \frac{d x}{x^{2}+4 x+8} & =\int \frac{d x}{(x+2)^{2}+4}=\int \frac{d u}{u^{2}+4} & & \text { Letting } u=x+2 \\
& =\frac{1}{2} \arctan \left(\frac{u}{2}\right)+C & & \text { Formula } 24 \\
& =\frac{1}{2} \arctan \left(\frac{x+2}{2}\right)+C &
\end{array}
$$

Note: This could also be done by the substitution $x+2=\tan \theta$ after the first step of completing the square.
6. [10 points] Find the indefinite integral $\int \frac{x^{2}+1}{x(x+2)(x-1)} d x$

Solution This is a rational function which does not simplify or yield to any obvious substitutions. So we apply the partial fraction method. From the factorization of the denominator,

$$
\frac{x^{2}+1}{x(x+2)(x-1)}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{x-1}
$$

for some A, B, and C. To determine those coefficients, clear denominators:

$$
x^{2}+1=A(x+2)(x-1)+B x(x-1)+C x(x+2)
$$

For one like this, the easiest way to determine values of A, B, C is to substitute x-values that zero out terms. With $x=0$, we get $1=-2 A$, so $A=-\frac{1}{2}$. With $x=1,2=3 C$, so $C=\frac{2}{3}$. With $x=-2,5=6 B$, so $B=\frac{5}{6}$. Thus

$$
\begin{aligned}
\int \frac{x^{2}+1}{x(x+2)(x-1)} d x & =-\frac{1}{2} \int \frac{d x}{x}+\frac{5}{6} \int \frac{d x}{x+2}+\frac{2}{3} \int \frac{d x}{x-1} \\
& =-\frac{1}{2} \ln |x|+\frac{5}{6} \ln |x+2|+\frac{2}{3} \ln |x-1|+C
\end{aligned}
$$

7. [10 points] Compute any two of the following; clearly mark your choices and indicate the method of integration.
(i) $\int \frac{1}{\sqrt{1-x^{4}}} d x$
(ii) $\int \frac{x}{\sqrt{1-x^{4}}} d x$
(iii) $\int \frac{x^{2}}{\sqrt{1-x^{4}}} d x$
(iv) $\int \frac{x^{3}}{\sqrt{1-x^{4}}} d x$

Solution The two "easy" ones here are (iv) and (ii). In (iv), the substitution $u=$ $1-x^{4}$ makes $d u=-4 x^{3} d x$ so the integral is

$$
-\frac{1}{4} \int u^{-1 / 2} d u=-\frac{1}{2} u^{1 / 2}+C=-\frac{1}{2} \sqrt{1-x^{4}}+C
$$

In (ii), if you let $u=x^{2}$, then $d u=2 x d x$ and the form is

$$
\frac{1}{2} \int \frac{d u}{\sqrt{1-u^{2}}}=\frac{1}{2} \arcsin u=\frac{1}{2} \arcsin \left(x^{2}\right)+C
$$

