Holy Cross College, Spring Semester, 2005 MATH 132, Section 01, Final Exam Solutions May 11

1. The following graph shows the function $y=f(x)$.

a. [10 points] Let $F(x)$ be the antiderivative of $f(x)$ with $F(0)=0$. Compute the entries in the following table of values:

Solution:

x	0	1	2	3	4
$F(x)$	0	-1	0	.5	-.5

For example, the area between the graph and the x-axis from $x=0$ to $x=1$ (counted with a negative sign) is -1 . So by the Fundamental Theorem of Calculus:

$$
-1=\int_{0}^{1} f(x) d x=F(1)-F(0)=F(1)-0 \Rightarrow F(1)=-1
$$

The others are obtained similarly.
b. [10 points] Sketch the graph $y=F(x)$ on the interval $0 \leq x \leq 4$:

2. Integrate each of the following. You must show all work and cite any table entries you use for full credit.
a. $[5$ points $] \int \frac{x^{2}+3 x+5}{x^{3 / 2}} d x$

Solution: Divide $x^{3 / 2}$ into each term on the top, then integrate:

$$
\begin{aligned}
\int \frac{x^{2}+3 x+5}{x^{3 / 2}} d x & =\int x^{1 / 2}+3 x^{-1 / 2}+5 x^{-3 / 2} \\
& =\frac{2}{3} x^{3 / 2}+6 x^{1 / 2}-10 x^{-1 / 2}+C
\end{aligned}
$$

b. $[10$ points $] \int \frac{e^{t}+1}{\left(e^{t}+t\right)^{2}} d t$

Solution: Let $u=e^{t}+t$, so $d u=\left(e^{t}+1\right) d t$. Then the form is

$$
\int \frac{d u}{u^{2}}=\frac{-1}{u}+C=\frac{-1}{e^{t}+t}+C
$$

c. $[10$ points $] \int \frac{d x}{\left(9-x^{2}\right)^{3 / 2}}$

Solution: We use the trigonometric substitution $x=3 \sin \theta$, so $d x=3 \cos \theta$ and

$$
\begin{aligned}
\int \frac{d x}{\left(9-x^{2}\right)^{3 / 2}} & =\int \frac{3 \cos \theta d \theta}{27 \cos ^{3} \theta} \\
& =\frac{1}{9} \int \frac{d \theta}{\cos ^{2} \theta} \\
& =\frac{1}{9} \tan \theta+C \\
& =\frac{1}{9} \frac{\sin \theta}{\cos \theta}+C \\
& =\frac{1}{9} \frac{x}{\sqrt{9-x^{2}}}+C
\end{aligned}
$$

d. [10 points] $\int_{0}^{1} x^{2} e^{2 x} d x$

Solution: Use integration by parts twice, or \# 14 in the table of integrals:

$$
\int x^{2} e^{2 x} d x=\left(\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{4}\right) e^{2 x}+C
$$

Then for the definite integral

$$
\int x^{2} e^{2 x} d x=\left.\left(\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{4}\right) e^{2 x}\right|_{0} ^{1}=\frac{1}{4}\left(e^{2}-1\right) \doteq 1.597
$$

e. $[10$ points $] \int \frac{(x-1) d x}{x^{3}+25 x}$

Solution: Use partial fractions based on the factorization $x^{3}+25 x=x\left(x^{2}+25\right)$. We have

$$
\frac{x-1}{x\left(x^{2}+25\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+25}
$$

Clearing denominators,

$$
x-1=A\left(x^{2}+25\right)+(B x+C) x=(A+B) x^{2}+C x+25 A
$$

Equating coefficients of like powers of $x:(A+B)=0, C=1$, and $25 A=-1$. So $A=\frac{-1}{25}$ and $B=\frac{-1}{25}$. Then using \# 25 in the table

$$
\int \frac{\frac{-1}{25}}{x}+\frac{\frac{1}{25} x+1}{x^{2}+25}=\frac{-1}{25} \ln |x|+\frac{1}{50} \ln \left|x^{2}+25\right|+\frac{1}{5} \arctan \left(\frac{x}{5}\right)+C
$$

3. All parts of this problem refer to the region in the plane bounded by $y=2+\cos (x)$, $y=0, x=0$, and $x=\pi$, shown below:

a. [10 points] Find the volume of the solid with base R whose cross-sections by planes perpendicular to the x-axis are squares.

Solution: We have, using \# 18 in the table

$$
\begin{aligned}
V & =\int_{0}^{\pi}(2+\cos x)^{2} d x \\
& =\int_{0}^{\pi} 4+4 \cos x+\cos ^{2} x d x \\
& =\left(4 x+4 \sin x+\frac{1}{2} x+\left.\frac{1}{2} \sin x \cos x\right|_{0} ^{\pi}\right. \\
& =\frac{9 \pi}{2}
\end{aligned}
$$

b. [10 points] True or False: The solid obtained by rotating R about the x-axis has volume π times the volume from part a. (For full credit, give the integral that would compute the volume of this solid of revolution, and answer the question.)

Solution: This is TRUE, since the volume of the solid of revolution is

$$
\int_{0}^{\pi} \pi(2+\cos x)^{2} d x=\pi \int_{0}^{\pi}(2+\cos x)^{2} d x .
$$

c. [15 points] A thin metal plate has the shape of the region R (units in meters) and constant mass density $1 \mathrm{~kg} / \mathrm{m}^{2}$. Find the x-coordinate of its center of mass.

Solution: We have, integrating by parts on the top

$$
\begin{aligned}
\bar{x} & =\frac{\int_{0}^{\pi} x(2+\cos x) d x}{\int_{0}^{\pi}(2+\cos x) d x} \\
& =\frac{x^{2}+x \sin x+\left.\cos x\right|_{0} ^{\pi}}{2 x+\left.\sin x\right|_{0} ^{\pi}} \\
& =\frac{\pi^{2}-2}{\pi}
\end{aligned}
$$

d. [10 points] Set up, but do not evaluate the integral giving the arclength of the top edge of R.
Solution: The arclength integral is $L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$. Here, since $y=2+\cos x$, $\frac{d y}{d x}=-\sin x$ and

$$
L=\int_{0}^{\pi} \sqrt{1+\sin ^{2} x} d x
$$

4. [5 points each] The following graph shows a probability density function (pdf) for a quantity x :

a. Which of the following two plots shows the corresponding cumulative distribution for x :

Solution: Graph B is the correct cdf for the given density function. We can see this because the given density should be the derivative of the cdf. Plot B has two maxima for the slope, corresponding to the two "peaks".
b. Using the appropriate graph, estimate the median of x.

Solution: The median is the T-value where $\int_{-\infty}^{T} p(x) d x=\frac{1}{2}$. Drawing in a horizontal line in plot B , it appears that the line $y=1 / 2$ intersects the graph at about $x=1$. That is the median value.
5. [5 points each] Does each of the following series converge? For full credit, you must justify your answer completely by showing how the indicated test leads to your stated conclusion.
a. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 3}}-$ alternating series test.

Solution: $\lim _{n \rightarrow \infty} \frac{1}{n^{1 / 3}}=0$ and for all $n \geq 1, \frac{1}{n^{1 / 3}}>\frac{1}{(n+1)^{1 / 3}}$. Hence the alternating series test (see p. 420 in the textbook) implies that this series converges.
b. $\sum_{n=1}^{\infty} \frac{1}{n^{9 / 10}}-$ integral test

Solution: The improper integral

$$
\left.\int_{1}^{\infty} \frac{d x}{x^{9 / 10}}=\lim _{b \rightarrow \infty} 10 x^{1 / 10} \right\rvert\, 1^{b}
$$

does not converge, because as $b \rightarrow \infty$, so does $b^{1 / 10}$. Hence by the integral test, this series diverges.
c. $\sum_{n=1}^{\infty} \frac{1}{n e^{n}}-$ any applicable method

Solution: Method 1: Since $n \geq 1, \frac{1}{n e^{n}}<\frac{1}{e^{n}}$. The series $\sum_{n=1}^{\infty} \frac{1}{e^{n}}$ is a geometric series with ratio $\frac{1}{e}<1$. Hence it converges. By the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n e^{n}}$ converges too.

Method 2: Apply the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{(n+1) e^{n+1}} \cdot \frac{n e^{n}}{1}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot \frac{1}{e}=\frac{1}{e}
$$

Since $\frac{1}{e}<1$, the ratio test implies the series converges.
6. [10 points] Using the ratio test, determine the radius of convergence of the following power series

$$
\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n^{2} 4^{n}}
$$

Solution:

$$
\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{(n+1)^{2} 4^{n+1}} \cdot \frac{n^{2} 4^{n}}{(x+2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}} \frac{1}{4}|x+2|=\frac{1}{4}|x+2|
$$

The radius of convergence is $1 /(1 / 4)=4$.
7. All parts of this problem refer to $f(x)=\cos \left(\frac{x}{2}\right)$.
a. [15 points] Using the definition of Taylor polynomials, compute the Taylor polynomial of degree $n=6$ for $f(x)$ at $a=0$.

Solution: The problem said to use the definition of Taylor polynomials, so we compute $f^{\prime}(x)=\frac{-1}{2} \sin \left(\frac{x}{2}\right)$, etc. The 6 th degree polynomial is

$$
p_{6}(x)=\sum_{i=0}^{6} \frac{f^{(i)}(0)}{i!} x^{i}=1-\frac{1}{8} x^{2}+\frac{1}{384} x^{4}-\frac{1}{46080} x^{6}
$$

b. [5 points] Use your answer from part a to approximate $\cos (1.2)$.

Solution: Since $f(x)=\cos \left(\frac{x}{2}\right)$, to approximate $\cos (1.2)$, we substitute $x=2.4$ into $p_{6}(x)$ from part a. (Note: $p_{6}(x)$ is supposed to approximate $\cos \left(\frac{x}{2}\right)$, so to get 1.2 "inside" the cosine, we want $x=2.4$. We get

$$
p_{6}(2.4)=1-\frac{1}{8}(2.4)^{2}+\frac{1}{384}(2.4)^{4}-\frac{1}{46080}(2.4)^{6} \doteq 1-.72 .0864-.0041472 \doteq .3622528
$$

c. [10 points] Using the error bound for Taylor approximations, estimate how big n must be to guarantee 4 decimal place accuracy in approximations to $f(x)$ for all x between 0 and 2 .

Solution: The $(n+1)$ st derivative of $f(x)$ is $\frac{1}{2^{n+1}}$ times either $\pm \sin x$ or $\pm \cos x$. Hence we can use $M=\frac{1}{2^{n+1}}$ in the error bound, and we get for x between 0 and 2 :

$$
\left|f(x)-p_{n}(x)\right| \leq \frac{\frac{1}{2^{n+1}}}{(n+1)!} 2^{n+1}=\frac{1}{(n+1)!}
$$

We have $\frac{1}{8!} \doteq .000025$ so $n=7$ (or $n=6$, since $p_{6}=p_{7}$ for cos) is large enough.
8. When a course ends, it's an unfortunate fact of life that students start to forget the material they have learned. One mathematical model for this process states that the rate at which a student forgets material is proportional to the difference between the material currently remembered and some positive constant $a<1$. Let y be the fraction of the original material remembered t weeks after the course has ended. Then $y(0)=1$, and the model assumes $y(t)>a$ for all t.
a. [5 points] Which of the following differential equations is the translation of the model described above:

$$
I: \frac{d y}{d t}=-k(y-a) \quad I I: \frac{d y}{d t}=\frac{-k}{y-a}
$$

Solution: I is the correct equation.
b. [10 points] Solve the equation you selected in part a by separation of variables.

Solution: Dividing by $y-a$ separates so

$$
\begin{aligned}
\int \frac{d y}{y-a} & =\int-k d t \\
\ln |y-a| & =-k t+c \\
y & =a+d e^{-k t}
\end{aligned}
$$

where $d= \pm e^{c}$. Note that it is given in the problem that $y(0)=1$. This says $1=y(0)=$ $a+d \cdot 1$, so $d=1-a$.
c. [10 points] Suppose $a=.2$, and after 3 weeks the student only remembers 80% of the material from the course (that is, $y(3)=.8$). How long will it be before the student only remembers one half of the material?

Solution: Using this last comment, $y(t)=.2+.8 e^{-k t}$. From the given information $y(3)=.8$, so

$$
.8=.2+.8 e^{-3 k} \Rightarrow k=\frac{\ln (.6 / .8)}{-3} \doteq .0959
$$

Then we want to solve for t :

$$
.5=.2+.8 e^{(-.0959) t} \Rightarrow t=\frac{\ln (.3 / .8)}{-.0959} \doteq 10.23
$$

That is, the student will only remember half of the material 10.23 weeks after the end of the class.

