Codes from surfaces with small Picard number

John B. Little/joint work with Hal Schenck

College of the Holy Cross/University of Illinois
Fq12 - Saratoga Springs

July 17, 2015

Evaluation codes

Evaluation codes

- X an algebraic variety over $\mathbb{F}_{q}, \mathcal{S}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq X\left(\mathbb{F}_{q}\right)$, \mathcal{L} a vector space of functions on X with all $f\left(P_{i}\right)$ defined.

Evaluation codes

- X an algebraic variety over $\mathbb{F}_{q}, \mathcal{S}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq X\left(\mathbb{F}_{q}\right)$, \mathcal{L} a vector space of functions on X with all $f\left(P_{i}\right)$ defined.
- The image of the evaluation map

$$
\begin{aligned}
e v: \mathcal{L} & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

is a linear code; $k \leq \operatorname{dim} \mathcal{L} ; d$ depends on $X, \mathcal{S}, \mathcal{L}$.

Evaluation codes

- X an algebraic variety over $\mathbb{F}_{q}, \mathcal{S}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq X\left(\mathbb{F}_{q}\right)$, \mathcal{L} a vector space of functions on X with all $f\left(P_{i}\right)$ defined.
- The image of the evaluation map

$$
\begin{aligned}
e v: \mathcal{L} & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

is a linear code; $k \leq \operatorname{dim} \mathcal{L} ; d$ depends on $X, \mathcal{S}, \mathcal{L}$.

- Reed-Solomon codes $R S(k, q)$ are examples with $X=\mathbb{P}^{1}$, $\mathcal{S}=\mathbb{F}_{q}^{*} \subset \mathbb{P}^{1}$, and $\mathcal{L}=\operatorname{Span}\left\{1, x, \ldots, x^{k-1}\right\}=L\left((k-1) P_{\infty}\right)$ $(k<q)$ (meet the Singleton bound).

Evaluation codes

- X an algebraic variety over $\mathbb{F}_{q}, \mathcal{S}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq X\left(\mathbb{F}_{q}\right)$, \mathcal{L} a vector space of functions on X with all $f\left(P_{i}\right)$ defined.
- The image of the evaluation map

$$
\begin{aligned}
e v: \mathcal{L} & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

is a linear code; $k \leq \operatorname{dim} \mathcal{L} ; d$ depends on $X, \mathcal{S}, \mathcal{L}$.

- Reed-Solomon codes $R S(k, q)$ are examples with $X=\mathbb{P}^{1}$, $\mathcal{S}=\mathbb{F}_{q}^{*} \subset \mathbb{P}^{1}$, and $\mathcal{L}=\operatorname{Span}\left\{1, x, \ldots, x^{k-1}\right\}=L\left((k-1) P_{\infty}\right)$ $(k<q)$ (meet the Singleton bound).
- AG Goppa codes: $\mathbb{P}^{1} \mapsto$ other curves over \mathbb{F}_{q}.

Goal for this work

- What about higher-dimensional varieties X ?
- Some examples have been studied-e.g. projective Reed-Muller codes from $X=\mathbb{P}^{n}$
- Codes from quadrics, Hermitian varieties, Grassmannians, flag varieties, Deligne-Lusztig varieties
- But, still really not much known!
- We'll concentrate on Reed-Muller-type codes with $\mathcal{S}=X\left(\mathbb{F}_{q}\right), \mathcal{L}=$ vector space of homogeneous forms of some fixed degree s.

Key issue with these codes; motivating example

Key issue with these codes; motivating example

- One recurrent pattern: Low weight codewords tend to come from f where $X \cap \mathbf{V}(f)$ is reducible (possibly if $q \gg 0$).

Key issue with these codes; motivating example

- One recurrent pattern: Low weight codewords tend to come from f where $X \cap \mathbf{V}(f)$ is reducible (possibly if $q \gg 0$).
- Example: X a quadric surface in \mathbb{P}^{3}.

Key issue with these codes; motivating example

- One recurrent pattern: Low weight codewords tend to come from f where $X \cap \mathbf{V}(f)$ is reducible (possibly if $q \gg 0$).
- Example: X a quadric surface in \mathbb{P}^{3}.
- If X is hyperbolic, $\left|X\left(\mathbb{F}_{q}\right)\right|=q^{2}+2 q+1$. Tangent planes intersect X in reducible curves with $2 q+1 \mathbb{F}_{q}$-points.
- But if X is elliptic, rulings not defined over \mathbb{F}_{q} so $\left|X\left(\mathbb{F}_{q}\right)\right|=q^{2}+1$, and planes meet X in curves with at most $q+1 \mathbb{F}_{q}$-rational points.

Key issue with these codes; motivating example

- One recurrent pattern: Low weight codewords tend to come from f where $X \cap \mathbf{V}(f)$ is reducible (possibly if $q \gg 0$).
- Example: X a quadric surface in \mathbb{P}^{3}.
- If X is hyperbolic, $\left|X\left(\mathbb{F}_{q}\right)\right|=q^{2}+2 q+1$. Tangent planes intersect X in reducible curves with $2 q+1 \mathbb{F}_{q}$-points.
- But if X is elliptic, rulings not defined over \mathbb{F}_{q} so $\left|X\left(\mathbb{F}_{q}\right)\right|=q^{2}+1$, and planes meet X in curves with at most $q+1 \mathbb{F}_{q}$-rational points.
- $s=1$ codes with $S=X\left(\mathbb{F}_{q}\right)$ have parameters: $\left[q^{2}+2 q+1,4, q^{2}\right]$ (hyperbolic) and $\left[q^{2}+1,4, q^{2}-q\right]$ (elliptic - better - equals best known for $q=8,9$).

Ansatz from 2007 thesis of M. Zarzar (UT Austin)

Ansatz from 2007 thesis of M. Zarzar (UT Austin)

- $N S(X)=$ group of \mathbb{F}_{q}-rational divisor classes modulo algebraic equivalence (a finitely-generated abelian group)

Ansatz from 2007 thesis of M. Zarzar (UT Austin)

- $N S(X)=$ group of \mathbb{F}_{q}-rational divisor classes modulo algebraic equivalence (a finitely-generated abelian group)
- Example: X an elliptic quadric: $N S(X)=\mathbb{Z} \cdot[H], H=a$ smooth conic plane section; X a hyperbolic quadric: $N S(X)=\mathbb{Z}\left[L_{1}\right] \oplus \mathbb{Z}\left[L_{2}\right]$ (lines from the two rulings).

Ansatz from 2007 thesis of M. Zarzar (UT Austin)

- $N S(X)=$ group of \mathbb{F}_{q}-rational divisor classes modulo algebraic equivalence (a finitely-generated abelian group)
- Example: X an elliptic quadric: $N S(X)=\mathbb{Z} \cdot[H], H=a$ smooth conic plane section; X a hyperbolic quadric: $N S(X)=\mathbb{Z}\left[L_{1}\right] \oplus \mathbb{Z}\left[L_{2}\right]$ (lines from the two rulings).

Theorem (Zarzar)

If $\operatorname{deg} X=d$ with $\left(d, \operatorname{char}\left(\mathbb{F}_{q}\right)\right)=1, \operatorname{rank}(N S(X))=1$, and Y irreducible over \mathbb{F}_{q} with $\operatorname{deg} Y<d$, then $X \cap Y$ is irreducible.

Ansatz from 2007 thesis of M. Zarzar (UT Austin)

- $N S(X)=$ group of \mathbb{F}_{q}-rational divisor classes modulo algebraic equivalence (a finitely-generated abelian group)
- Example: X an elliptic quadric: $N S(X)=\mathbb{Z} \cdot[H], H=a$ smooth conic plane section; X a hyperbolic quadric: $N S(X)=\mathbb{Z}\left[L_{1}\right] \oplus \mathbb{Z}\left[L_{2}\right]$ (lines from the two rulings).

Theorem (Zarzar)

If $\operatorname{deg} X=d$ with $\left(d, \operatorname{char}\left(\mathbb{F}_{q}\right)\right)=1, \operatorname{rank}(N S(X))=1$, and Y irreducible over \mathbb{F}_{q} with $\operatorname{deg} Y<d$, then $X \cap Y$ is irreducible.

- So (key idea) - good codes (might) come from surfaces X with Picard number $=\operatorname{rank} N S(X)=1$ (or small).

A test case - cubic surface codes

A test case - cubic surface codes

- "Fact 1:" Over an algebraically closed field, a smooth cubic surface contains exactly 27 lines, always in a particular highly symmetric configuration.
- Symmetry group of the 27 lines is a group of order 51840 $\left(=W\left(E_{6}\right)\right)$

A test case - cubic surface codes

- "Fact 1:" Over an algebraically closed field, a smooth cubic surface contains exactly 27 lines, always in a particular highly symmetric configuration.
- Symmetry group of the 27 lines is a group of order 51840 $\left(=W\left(E_{6}\right)\right)$
- Frobenius acts as a permutation of the lines
- There is a complete classification of the conjugacy classes in $W\left(E_{6}\right)$; the class where Frobenius lies determines the \mathbb{F}_{q}-structure!

A test case - cubic surface codes

- "Fact 1:" Over an algebraically closed field, a smooth cubic surface contains exactly 27 lines, always in a particular highly symmetric configuration.
- Symmetry group of the 27 lines is a group of order 51840 (= W $\left(E_{6}\right)$)
- Frobenius acts as a permutation of the lines
- There is a complete classification of the conjugacy classes in $W\left(E_{6}\right)$; the class where Frobenius lies determines the \mathbb{F}_{q}-structure!
- The 25 possibilities summarized in a 1967 paper of Swinnerton-Dyer (and in a related table in Manin's book Cubic Forms).

An extract from the Swinnerton-Dyer table

Exactly five types of cubics with Picard number $=1(\Rightarrow$ no \mathbb{F}_{q}-rational lines or conics)

Class	Perm Type of Frob	$\left\|X\left(\mathbb{F}_{q}\right)\right\|$
C_{10}	$\left\{3,6^{3}, 6\right\}$	$q^{2}-q+1$
C_{11}	$\left\{3^{9}\right\}$	$q^{2}-2 q+1$
C_{12}	$\left\{3,6^{4}\right\}$	$q^{2}+2 q+1$
C_{13}	$\left\{3,12^{3}\right\}$	$q^{2}+1$
C_{14}	$\left\{9^{3}\right\}$	$q^{2}+q+1$

Some experimental results

With $q=7$, the $s=1$ (and $s=2$) codes look like this:

- $C_{10}-[43,4,30]$ and $[43,4,31]$ examples (but best known is $d=35$)
- $C_{11}-[36,4,23]$ and $[36,4,24]$ examples (but best possible is $28 \leq d \leq 29$)
- $C_{12}-[64,4,51]$ examples (but best possible is $52 \leq d \leq 53$) (also $s=2$ with [64, 10, 38], but best possible is $41 \leq d \leq 48$)
- C_{13} (very rare) - $[50,4,37]$ (but best known is $d=42$)
- C_{14} (rare) - [57, 4, 44] (but best known is $d=47$)

What to make of all this?

What to make of all this?

- Among these, C_{12} cubics are the best for this construction, but still not that great
- Plane sections of cubics with Picard number >1 can have up to $3 q+1 \mathbb{F}_{q}$-points (Eckardt points as in Amanda Knecht's talk!) Largest number of \mathbb{F}_{7}-points here is e.g., $64-51=13(\Rightarrow$ confirmation of Zarzar's Ansatz)

What to make of all this?

- Among these, C_{12} cubics are the best for this construction, but still not that great
- Plane sections of cubics with Picard number >1 can have up to $3 q+1 \mathbb{F}_{q}$-points (Eckardt points as in Amanda Knecht's talk!) Largest number of \mathbb{F}_{7}-points here is e.g., $64-51=13(\Rightarrow$ confirmation of Zarzar's Ansatz)
- Why 13? Hasse-Weil-Serre bound: The maximum number of \mathbb{F}_{7}-points on a smooth plane cubic is $1+7+\lfloor 2 \sqrt{7}\rfloor=13$ and attained. Singular (but irreducible) plane sections all have either $q=7$ ("split" node), $q+1=8$ (cusp), or $q+2=9$ ("non-split" node) \mathbb{F}_{7}-points.
- Note: Some C_{10} and C_{11} surfaces have no plane sections with $13 \mathbb{F}_{7}$-points.

A byproduct of this experimentation

Based on lots of additional experimental evidence for prime powers $q \leq 37$,

Conjecture

For all $q \geq 5, C_{12}$ cubics always have optimal cubic plane sections, i.e. plane sections with the maximum number of \mathbb{F}_{q}-points for a smooth plane cubic curve.

Have verified this completely for q up to 13 by "brute force," but is there a deeper reason why it should hold?

Also would show $s=1$ codes from C_{12} cubics do not give any "new bests" for larger q.

Some bounds - sectional genus of X also matters!

Notation: $C\left(X, s, \mathbb{F}_{q}\right)=$ degree s code on a projective surface X.

Theorem

Assume $\left(\operatorname{deg} X, \operatorname{char}\left(\mathbb{F}_{q}\right)\right)=1$ and Picard number of $X=1$. Writing $d_{1}=d\left(C\left(X, 1, \mathbb{F}_{q}\right)\right), g=$ sectional genus,

$$
n-d_{1} \leq 1+q+g\lfloor 2 \sqrt{q}\rfloor .
$$

Corollary

In situation of theorem, if q is sufficiently large, then writing $d_{s}=d\left(C\left(X, s, \mathbb{F}_{q}\right)\right)$,

$$
n-d_{s} \leq s\left(n-d_{1}\right)
$$

Sectional genus $g=0$

Theorem

If S is a smooth abstract surface and L is an ample line bundle with $g(L)=0$, then (S, L) is one of the following:

- $\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(r)\right), r=1,2$.
- $\left(Q, \mathcal{O}_{Q}(1)\right)$
- a Hirzebruch surface $\left(F_{r}, \mathcal{O}_{F_{r}}(E+s f)\right), s \geq r+1$.

In other words, few examples, and those are pretty well understood from coding theory perspective - e.g. codes from scrolls (C. Carvalho's talk), toric surface codes.

Higher sectional genus surfaces not promising

Higher sectional genus surfaces not promising

- Consider the surface X_{m} in \mathbb{P}^{3} given by

$$
0=w^{m}+x y^{m-1}+y z^{m-1}+z x^{m-1}
$$

Shioda: rank $N S(X)=1$ over \mathbb{C} if $m \geq 5$ (and K3 with rank $N S(X)=20$ for $m=4$).

Higher sectional genus surfaces not promising

- Consider the surface X_{m} in \mathbb{P}^{3} given by

$$
0=w^{m}+x y^{m-1}+y z^{m-1}+z x^{m-1} .
$$

Shioda: rank $N S(X)=1$ over \mathbb{C} if $m \geq 5$ (and K3 with rank $N S(X)=20$ for $m=4$).

- For $m=4$, reduction of S_{4} may have no \mathbb{F}_{q}-lines or conics \Rightarrow no reducible plane sections.

Higher sectional genus surfaces not promising

- Consider the surface X_{m} in \mathbb{P}^{3} given by

$$
0=w^{m}+x y^{m-1}+y z^{m-1}+z x^{m-1} .
$$

Shioda: rank $N S(X)=1$ over \mathbb{C} if $m \geq 5$ (and K3 with rank $N S(X)=20$ for $m=4$).

- For $m=4$, reduction of S_{4} may have no \mathbb{F}_{q}-lines or conics \Rightarrow no reducible plane sections.
- With $q=11$ and $s=1, C\left(S_{4}, 1, \mathbb{F}_{11}\right)$ is [144, 4, 120].

Higher sectional genus surfaces not promising

- Consider the surface X_{m} in \mathbb{P}^{3} given by

$$
0=w^{m}+x y^{m-1}+y z^{m-1}+z x^{m-1}
$$

Shioda: rank $N S(X)=1$ over \mathbb{C} if $m \geq 5$ (and K3 with rank $N S(X)=20$ for $m=4$).

- For $m=4$, reduction of S_{4} may have no \mathbb{F}_{q}-lines or conics \Rightarrow no reducible plane sections.
- With $q=11$ and $s=1, C\left(S_{4}, 1, \mathbb{F}_{11}\right)$ is [144, 4, 120].
- Min. weight codewords \leftrightarrow smooth plane quartics $(g=3)$ with $24 \mathbb{F}_{11}$-rational points (optimal for $g=3$ by manypoints.org).

Higher sectional genus surfaces not promising

- Consider the surface X_{m} in \mathbb{P}^{3} given by

$$
0=w^{m}+x y^{m-1}+y z^{m-1}+z x^{m-1} .
$$

Shioda: rank $N S(X)=1$ over \mathbb{C} if $m \geq 5$ (and K3 with rank $N S(X)=20$ for $m=4$).

- For $m=4$, reduction of S_{4} may have no \mathbb{F}_{q}-lines or conics \Rightarrow no reducible plane sections.
- With $q=11$ and $s=1, C\left(S_{4}, 1, \mathbb{F}_{11}\right)$ is [144, 4, 120].
- Min. weight codewords \leftrightarrow smooth plane quartics $(g=3)$ with $24 \mathbb{F}_{11}$-rational points (optimal for $g=3$ by manypoints.org).
- C_{12} cubics over \mathbb{F}_{11} : all give $[144,4,126]$ codes: $g=1$ curves over \mathbb{F}_{11} have at most 18 rational points.

Higher sectional genus surfaces not promising

- Consider the surface X_{m} in \mathbb{P}^{3} given by

$$
0=w^{m}+x y^{m-1}+y z^{m-1}+z x^{m-1} .
$$

Shioda: rank $N S(X)=1$ over \mathbb{C} if $m \geq 5$ (and K3 with rank $N S(X)=20$ for $m=4$).

- For $m=4$, reduction of S_{4} may have no \mathbb{F}_{q}-lines or conics \Rightarrow no reducible plane sections.
- With $q=11$ and $s=1, C\left(S_{4}, 1, \mathbb{F}_{11}\right)$ is [144, 4, 120].
- Min. weight codewords \leftrightarrow smooth plane quartics $(g=3)$ with $24 \mathbb{F}_{11}$-rational points (optimal for $g=3$ by manypoints.org).
- C_{12} cubics over \mathbb{F}_{11} : all give $[144,4,126]$ codes: $g=1$ curves over \mathbb{F}_{11} have at most 18 rational points.
- Similarly for $m \geq 5$.

A better sectional genus 1 example

A better sectional genus 1 example

- Consider the linear system of cubics in \mathbb{P}^{2} through a general Frobenius orbit $\mathcal{O}_{3}=\left\{P, F(P), F^{2}(P)\right\}$ $\left(P \in \mathbb{P}^{2}\left(\mathbb{F}_{q^{3}}\right)\right)$

A better sectional genus 1 example

- Consider the linear system of cubics in \mathbb{P}^{2} through a general Frobenius orbit $\mathcal{O}_{3}=\left\{P, F(P), F^{2}(P)\right\}$ $\left(P \in \mathbb{P}^{2}\left(\mathbb{F}_{q^{3}}\right)\right)$
- $\operatorname{dim}=7$, so defines a rational map \mathbb{P}^{2} into \mathbb{P}^{6}
- Image is a degree 6 del Pezzo surface X over \mathbb{F}_{q},

A better sectional genus 1 example

- Consider the linear system of cubics in \mathbb{P}^{2} through a general Frobenius orbit $\mathcal{O}_{3}=\left\{P, F(P), F^{2}(P)\right\}$ $\left(P \in \mathbb{P}^{2}\left(\mathbb{F}_{q^{3}}\right)\right)$
- $\operatorname{dim}=7$, so defines a rational map \mathbb{P}^{2} into \mathbb{P}^{6}
- Image is a degree 6 del Pezzo surface X over \mathbb{F}_{q},
- Blows up the points in \mathcal{O}_{3} to lines, but defined over $\mathbb{F}_{q^{3}}$, not \mathbb{F}_{q}.

A better sectional genus 1 example

- Consider the linear system of cubics in \mathbb{P}^{2} through a general Frobenius orbit $\mathcal{O}_{3}=\left\{P, F(P), F^{2}(P)\right\}$ $\left(P \in \mathbb{P}^{2}\left(\mathbb{F}_{q^{3}}\right)\right)$
- $\operatorname{dim}=7$, so defines a rational map \mathbb{P}^{2} into \mathbb{P}^{6}
- Image is a degree 6 del Pezzo surface X over \mathbb{F}_{q},
- Blows up the points in \mathcal{O}_{3} to lines, but defined over $\mathbb{F}_{q^{3}}$, not \mathbb{F}_{q}.
- \Rightarrow Picard number equal to 2
- $\mathrm{NS}(X)$ is generated by classes of proper transforms of conics in \mathbb{P}^{2} through \mathcal{O}_{3}, and lines in \mathbb{P}^{2}.

How to determine the Picard number

- The zeta function of X has the form

$$
Z(X, t)=\frac{[\operatorname{deg} 0][\operatorname{deg} 0]}{[\operatorname{deg} 1][\operatorname{deg} 4][\operatorname{deg} 1]}=\frac{1}{(1-t) P_{2}(t)\left(1-q^{2} t\right)}
$$

$$
\text { where } P_{2}(t)=(1-q t) \prod_{j=1}^{3}\left(1-\alpha_{j} t\right), \text { with }\left|\alpha_{j}\right|=q \text { all } j
$$

- Usual zeta function "yoga":

$$
\left|X\left(\mathbb{F}_{q^{r}}\right)\right|=1+q^{2 r}+q^{r}+\sum_{j=1}^{3} \alpha_{j}^{r}= \begin{cases}1+q^{2 r}+q^{r} & r \equiv 1,2 \bmod 3 \\ 1+q^{2 r}+4 q^{r} & r \equiv 0 \bmod 3\end{cases}
$$

- $\Rightarrow \alpha_{j}=q, e^{2 \pi i / 3} q, e^{4 \pi i / 3} q$. Tate: the Picard number of X equals $1+$ the number of α_{j} equal to q.

(More) interesting codes!

Theorem (also see Couvreur, [1)
$J C\left(X, 1, \mathbb{F}_{q}\right)$ is a $\left[q^{2}+q+1,7, q^{2}-q-1\right]$ code over \mathbb{F}_{q}.
(Min weight words from reducible cubics: conic through \mathcal{O}_{3} union a line meeting the conic in a pair of conjugate $\mathbb{F}_{q^{2}}$-points) For $q=7,8,9$ this equals the best known d for these n, k according to Grassl's tables.

Conjecture

$C\left(X, 2, \mathbb{F}_{q}\right)$ is a $\left[q^{2}+q+1,19, q^{2}-3 q-1\right]$ code over \mathbb{F}_{q}.
Would be new best for $q=7,9$ and equal best known for $q=8$.

Thanks for your attention!

References

(1) A. Couvreur, Construction of rational surfaces yielding good codes, Finite Fields Appl. 17 (2011), 424-441.
(2) J. Voloch and M. Zarzar, Algebraic geometric codes on surfaces, in "Arithmetic, geometry, and coding theory", Sémin. Congr. Soc. Math. France, 21 (2010), 211-216.
(3) M. Zarzar, Error-correcting codes on low rank surfaces, Finite Fields Appl. 13 (2007), 727-737.

