Mathematics 244, section 1 – Linear Algebra Sample Exam 2 – March 16, 2007

I. All parts of this question refer to the matrix

$$A = \begin{pmatrix} 1 & 0 & 2 & 3 & -1 \\ 2 & 1 & -1 & 1 & s \\ -1 & -1 & 3 & 2 & -1 \end{pmatrix}$$

- A) For which value of the scalar s does A satisfy rank(A) = 2? In the next two parts use this value of s.
- B) Give a basis of Col(A).
- C) Find the dimension of Nul(A) and give a basis of Nul(A).

II.

A) Use Cramer's Rule to solve

$$5x_1 + 3x_2 - x_3 = 1$$
$$3x_1 + x_2 + x_3 = 2$$
$$x_1 + x_2 - x_3 = 0$$

B) Prove Cramer's Rule: If A is an invertible $n \times n$ matrix, then the solution of Ax = b is the vector x with entries

$$x_i = \frac{\det(A_i(b))}{\det(A)}$$

for $i = 1, \ldots, n$.

III. Let $V = P_3(\mathbf{R})$, the vector space of all polynomials of degree ≤ 3 with real coefficients.

- A) Is $T:V\to V$ defined by T(p)=p'-2p a linear transformation (p'= derivative of p)? Why or why not?
- B) Is

$$W = \{ p \in V : p'(x) - 2p(x) = 0 \text{ for all } x \}$$

a vector subspace of V? Why or why not?

IV. (True-False) For each true statement, give a short proof. For each false statement, give a counterexample. (Note: As always, "true" means "true in every case.")

- A) If $T: \mathbf{R}^5 \to \mathbf{R}^3$ is linear, A is the standard matrix of T, and $S = \{v_1, v_2, v_3\} \subset \text{Nul}(A)$, then S is linearly dependent.
- B) Let A, B be $n \times n$ matrices. If $\det(A) = -3$ and $B^2 = I$, then $B^t A B$ is an invertible matrix.
- C) If A is an $m \times n$ matrix, then $\operatorname{rank}(A) + \dim \operatorname{Nul}(A) = n$.