MATH 400 - Directed Readings in Module and Representation Theory Final Problem Set
 due: By email or hardcopy, no later than Saturday, May 15

Groundrules: You may consult only our text, Dummit and Foote, Abstract Algebra. If you use a result from a chapter we have not discussed, please "footnote" it.
I. Let $K, K^{\prime}, P, P^{\prime}, M$ be modules over a ring R. Assume that P and P^{\prime} are projective R-modules and that we have short exact sequences

$$
0 \longrightarrow K \longrightarrow P \longrightarrow M \longrightarrow 0
$$

and

$$
0 \longrightarrow K^{\prime} \longrightarrow P^{\prime} \longrightarrow M \longrightarrow 0
$$

(with the same M in the right-most nonzero position in both). In this problem you will show that $K \oplus P^{\prime} \simeq K^{\prime} \oplus P$ as R-modules.
A. Using the fact that P is projective show that there is a homomorphism $w: P \rightarrow P^{\prime}$ and a diagram

in which the square commutes.
B. Continuing from part A, show that there is a homomorphism $u: K \rightarrow K^{\prime}$ such that the left square in

is also commutative.
C. Show that the sequence

$$
0 \longrightarrow K \longrightarrow P \oplus K^{\prime} \longrightarrow P^{\prime} \longrightarrow 0
$$

is exact, where the map $K \longrightarrow P \oplus K^{\prime}$ is $x \longmapsto(i(x), u(x))$ and the map $P \oplus K^{\prime} \longrightarrow P^{\prime}$ is $(y, z) \longmapsto w(y)-j(z)$.
D. Deduce that $K \oplus P^{\prime} \simeq K^{\prime} \oplus P$ as R-modules.
II. Let F be a field and let $R=M_{n \times n}(F)$.
A. Show that there is a unique irreducible R-module M, up to isomorphism.
B. Let M be the module from part A. Show that $\operatorname{Hom}_{R}(M, M)$ is isomorphic to F as a ring.
III. Let F be a field and let $R=F[x] /\langle f(x)\rangle$ for some $f(x) \in F[x]$.
A. State and prove a necessary and sufficient condition on $f(x)$ for R to be a semisimple ring.
B. Describe the Wedderburn decomposition of R in the case that R is semisimple. (That is, what are the n_{i} and the Δ_{i} in the isomorphism

$$
R \simeq M_{n_{1} \times n_{1}}\left(\Delta_{1}\right) \times \cdots \times M_{n_{k} \times n_{k}}\left(\Delta_{k}\right)
$$

given by Wedderburn's Theorem?)

Read section 19.1, and using the ideas presented there do the following problems:
IV. Show that the character table of any finite group is an invertible $k \times k$ matrix, where $k=$ the number of conjugacy classes, or the number of irreducible characters.
V. Compute the character tables of
A. The group $S_{3} \times S_{3}$.
B. The alternating group A_{5}.

