Directions: Do all work in the blue exam booklet. There are 200 regular points and 20 Extra Credit points, distributed as marked. Take a deep breath before plunging in and read each question carefully.
I.
A) (10) Give a precise statement of the Fundamental Theorem of Calculus (both parts).
B) (15) The following graph shows $y=f(x)$. Let F be the antiderivative of f with $F(0)=0$ and F continuous. Sketch the graph $y=F(x)$.
II. Compute each of the following integrals. You may use the table of integrals anywhere on these. If you do, say which table entry you are using.
A) (10) $\int 3 x^{6}-4 \sqrt{x}+\sin (x) d x$
B) (10) $\int \frac{x^{3}}{x^{4}+1} d x$
C) (15) $\int x^{2} e^{-9 x} d x$
D) (10) $\int \frac{1}{\sqrt{4 x^{2}+9}} d x$
E) (15) $\int \frac{x+1}{x^{2}+5 x+6} d x$
III. Let R be the region bounded by $y=x$, the x-axis, and $x=1, x=4$.
A) (15) Find the volume of the solid obtained by rotating R about the line $y=-2$.
B) (10) A thin plate has the shape of the region $R(x, y$ in cm$)$ and density $\delta(x)=x^{-1 / 2}$ grams $/ \mathrm{cm}^{2}$. Find its total mass.
IV. At a particular location in Natick on the Mass Pike, a sensor was set up to measure the passage of traffic. The measurements made were used to derive a probability density function for the quantity $x=$ time gap between successive cars (in minutes). The results gave the following formula as a good fit for the pdf: $p(x)=11(1-x)^{10}$ if $0<x<1$, and zero otherwise.
A) (10) Show that p satisfies the usual property for a probability density function: $\int_{0}^{1} p(x) d x=1$.
B) (15) What is the probability that the time gap between successive cars is between $x=.1$ minute and $x=.2$ minute?
V.
A) (10) Using the definition of Taylor polynomials, compute the Taylor polynomial of degree $n=3$ for $f(x)=\sqrt{1+2 x}$ at $a=0$.
B) (10) Use our shortcut methods to check your work in part A.
C) (5) Use your polynomial from part A to compute an approximation to $\sqrt{1.2}$. What is the error in your approximation?
VI. (15) Solve for y by separation of variables: $\frac{d y}{d x}=\cos (x)\left(1+y^{2}\right)$ with $y(0)=1$.
VII. An avian flu epidemic has broken out in Birdsburgh, a large city with total population 10 million. Write N for the number of people who have been infected, as a function of time. The Birdsburgh Public Health department determines that:

$$
\begin{equation*}
\frac{d N}{d t}=k N(10-N) \tag{1}
\end{equation*}
$$

or in words: the rate of change of N is proportional to the product of N and the number of people not yet infected, where N is in millions of people, t in weeks, k a positive constant.
A) (10) Which of the following slope field plots matches (1)? Explain how you can tell.
B) (10) For what value of k is $N(t)=10 /\left(1+1000 e^{-t}\right)$ a solution of (1)?
C) (5) If the epidemic proceeds according to the function $N(t)$ in part B, how many weeks will pass before the number of infected people reaches 1 million?

Extra Credit (20) The hull of a boat is 20 feet long. At a distance s feet from the bow (the front), the cross section of the part of the hull below $y=0$ (the waterline) has the shape of the region in the $x y$-plane below $y=0$ and above the parabola $y=a x^{2}-b$, where a, b are given in the following table:

s	5	10	15	20
a	2	3	4	5
b	2	3	4	4

Estimate the volume enclosed by the hull below the water line.
Have an enjoyable, safe, and productive summer!

