I. Find derivatives of each of the following functions. Any correct form of the derivative is OK here.
A) $f(x)=\ln (x)+2^{4 x}$
B) $g(x)=\sin (x) \cos \left(x^{2}\right)$
C) $h(x)=\arctan \left(x^{2}+e^{2 x}+1\right)$
D) Find $\frac{d y}{d x}$ if $x^{2} y^{2}-2 x y+x^{3}=1$.
II. All parts of this question refer to the function

$$
f(x)=\frac{x}{x^{2}+4}
$$

A) Compute $f^{\prime}(x)$. Simplify and factor the numerator.
B) Using your $f^{\prime}(x)$, find all critical points of f and classify each as a local maximum, local minimum, or neither using the First Derivative Test.
C) Compute $f^{\prime \prime}(x)$. Simplify and factor the numerator again.
D) Using your $f^{\prime \prime}(x)$, at which x are the inflection points on the graph $y=f(x)$ located?
III. The hypotenuse of a right triangle has one end at $(0,0)$ and the other at a point on $y=x^{2} e^{-3 x}$ with $x \geq 0$. One of the other two sides lies along the x-axis and the other is parallel to the y-axis. Find the maximum area of such a triangle.
IV. A chemical storage tank is an "upside-down" cone. The depth is 12 meters and the top radius is 5 meters. When the depth of the chemical in the tank is 1 meter the level is falling at the rate of 1 meter per minute. How fast is the volume of chemical changing then?

