I. The following graph shows the derivative $y=f^{\prime}(x)$ for some function $f(x)$.
A) (15) Using the information here, construct a "qualitative" plot of $y=f^{\prime \prime}(x)$.
B) (10) Over which intervals is f increasing?
C) (5) Is f^{\prime} continuous at $x=1$? Why or why not? What happens on the graph $y=f(x)$ at $x=1$?
II.
A) (10) The function $H(t)$ gives the number of hours of daylight t days after the start of the year in Worcester. At $t=304$ days (October 31 in a non-leap year), $H^{\prime}(304)=$ -0.083 . Give the meaning of this equation as a sentence, using appropriate units.
B) (10) The table below gives the position s (in miles) of a freight train moving along a straight line track as a function of time t (in hours).

$$
\begin{array}{cccccc}
t & .5 & 1 & 1.5 & 2 & 2.5 \\
s & 10 & 25 & 42 & 50 & 55
\end{array}
$$

Estimate the train's instantaneous velocity at $t=1.5$ hours as closely as you can from this information.
III. (15) Using the limit definition, find $f^{\prime}(x)$ for $f(x)=1 / x$.
IV. Find derivatives of each of the following functions by applying the appropriate "shortcut" derivative rules:
A) (10) $f(x)=5 x^{7}-\frac{3}{\sqrt{x}}-4^{2 x}$
B) $(10) g(x)=\left(x^{2}+1\right)^{12} 2^{x}$
C) (10) $h(x)=\frac{x^{2}}{e^{x}-1}$
V. (5) Say whether the following statement is true or false, and explain your reasoning: If the time interval is short enough, then we expect the average velocity of a car over the interval will be close to its instantaneous velocity at any time in the interval.

