Mathematics 133 - Intensive Calculus for Science 1
"Quiz 0" - Algebra Review September 2, 2005
Your Name: Solutions -- Answer Key
Do all work on this sheet (front and back). You have 20 minutes. No calculators on this quiz.
A) Write as a single quotient and simplify: $\frac{\frac{1}{x}}{3-x^{2}}+\frac{2-x}{3+x^{2}}$

To add fractions, we find a common denominator, then add the numerators:

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d}{b d}+\frac{b c}{b d}=\frac{a d+b c}{b d}
$$

Here the result is

$$
\begin{aligned}
\frac{\frac{1}{x}}{3-x^{2}}+\frac{2-x}{3+x^{2}} & =\frac{\frac{1}{x}\left(3+x^{2}\right)}{\left(3-x^{2}\right)\left(3+x^{2}\right)}+\frac{(2-x)\left(3-x^{2}\right)}{\left(3+x^{2}\right)\left(3-x^{2}\right)} \\
& =\frac{\frac{3}{x}+x+6-3 x-2 x^{2}+x^{3}}{9-x^{4}} \\
& =\frac{3+6 x-2 x^{2}-2 x^{3}+x^{4}}{9 x-x^{5}}
\end{aligned}
$$

It's also OK to leave the denominator in factored form: $x\left(3-x^{2}\right)\left(3+x^{2}\right)$.
B) Solve for $t: 5(t-2)+1=12-t$.

Multiply out on the left: $5 t-10+1=12-t$ then add $t+9$ to both sides to put all the terms with t on the left: $6 t=21$. Hence $t=21 / 6=7 / 2$.
C) Solve for $x: 2 x^{2}-3 x=3$ (find all solutions)

The left side of the equation $2 x^{2}-3 x-3=0$ does not factor easily, so we use the Quadratic Formula: The roots of the quadratic equation $a x^{2}+b x+c=0$ are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Here $a=2, b=-3, c=-3$, so

$$
x=\frac{3 \pm \sqrt{9+24}}{4}=\frac{3 \pm \sqrt{33}}{4}
$$

D) Solve for $a: 27 a^{1 / 3}=3 a$

First method: Cube both sides to get rid of the cube root $a^{1 / 3}=\sqrt[3]{a}: 27^{3} a=27 a^{3}$, or $a^{3}-27^{2} a=0$. This factors as $a(a-27)(a+27)=0$, so $a=0, a=27$, or $a=-27$.
Second method: Notice that $a=0$ is one solution. If $a \neq 0$, then we can divide both sides by $3 a^{1 / 3}$ to get $9=a^{2 / 3}$. Hence $a=9^{3 / 2}=(\pm \sqrt{9})^{3}=(\pm 3)^{3}= \pm 27$.
E) Simplify: $\left((1+c)^{3 / 2}\right)^{4} \cdot(1+c)^{-2}$

By the rules for exponents:

$$
\left((1+c)^{3 / 2}\right)^{4} \cdot(1+c)^{-2}=(1+c)^{4 \cdot 3 / 2}(1+c)^{-2}=(1+c)^{6-2}=(1+c)^{4}
$$

F) Expand and simplify: $\left(a^{2}-2 b+2\right)(2 b-a+1)$

Answer: $2 a^{2} b-4 b^{2}+4 b-a^{3}+2 a b-2 a+a^{2}-2 b+2=2 a^{2} b-4 b^{2}+2 b-a^{3}+2 a b-2 a+a^{2}+2$.
G) Find the coordinates of the center and the radius of the circle with equation $x^{2}-6 x+$ $y^{2}+4 y=0$.

Answer: Completing the square in x and y, we find: $(x-3)^{2}-9+(y+2)^{2}-4=0$, or $(x-3)^{2}+(y+2)^{2}=13$. The center is at $(3,-2)$ and the radius is $\sqrt{13}$.

