I.
A) From the graph, $f(x)$ appears to be differentiable everywhere except $x=0$, where there is a sharp corner.
B) The derivative $y=f^{\prime}(x)$:

Note: $f^{\prime}(x)>0$ is positive on intervals where $f(x)$ is increasing and negative on intervals where $f(x)$ is decreasing. At $x=0$, there is a jump discontinuity on the graph $y=f^{\prime}(x)$ because of the sharp corner on the graph $y=f(x)$.
II.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-(x+h)+4-x^{2}+x-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x-h+4-x^{2}+x-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h-1 \\
& =2 x-1
\end{aligned}
$$

III.
A) (Product, exponential, and power rules)

$$
f^{\prime}(x)=2^{x} \ln (2)\left(x^{4}+3 x^{-1 / 3}\right)+2^{x}\left(4 x^{3}-x^{-4 / 3}\right)=2^{x}\left(\ln (2) x^{4}+3 \ln (2) x^{-1 / 3}+4 x^{3}-x^{-4 / 3}\right)
$$

B) By the chain rule (twice):

$$
g^{\prime}(x)=3\left(e^{\pi x}+2\right)^{2} \pi e^{\pi x}
$$

C) By the quotient rule:

$$
h^{\prime}(x)=\frac{\left(2 x^{2}+3 x\right)(2 x)-\left(x^{2}-3\right)(4 x+3)}{\left(2 x^{2}+3\right)^{2}}=\frac{3 x^{2}+12 x+9}{\left(2 x^{2}+3\right)^{2}}
$$

IV. The price in 2000 was $P(50)=100(1.05)^{5} 0 \doteq \$ 1146.74$. The price was changing at $P^{\prime}(50)=100(1.05)^{5} 0 \ln (1.05) \doteq 55.95$ dollars per year. It was increasing because $P^{\prime}(50)>0$.
V. $C^{\prime}(q)=\frac{50}{4} q^{-3 / 4}$, so $C^{\prime \prime}(q)=\frac{-150}{16} q^{-7 / 4}$. The cost function graph is concave down for $q>0$ since $C^{\prime \prime}(q)<0$. In everyday terms, this means that as the number of copies is increased, the cost per copy decreases.

