I.
A) Series A is not geometric because there is not a constant ratio between successive terms. For instance $\frac{1 / 2!}{1}=1 / 2$, but $\frac{1 / 3!}{1 / 2!}=2 / 6=1 / 3$. Series B is geometric with $a=3 / 2, r=1 / 2$.
B) From the sum formula for infinite geometric series

$$
\begin{aligned}
3 & =\frac{a}{1-r} \\
& =\frac{b / 2}{1-b / 2} \\
\Rightarrow 3 & =\frac{b}{2-b} \\
6-3 b & =b \\
6 & =4 b \\
\Rightarrow b & =6 / 4=3 / 2
\end{aligned}
$$

II.
A) For $f(x)=\cos (2 x)$, by the chain rule:

$$
\begin{aligned}
& f(0)=1 \\
f^{\prime}(x)=-2 \sin (2 x) & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=-4 \cos (2 x) & f^{\prime \prime}(0)=-4 \\
f^{\prime \prime \prime}(x)=+8 \sin (2 x) & f^{\prime \prime \prime}(0)=0 \\
f^{(4)}(x)=16 \cos (2 x) & f^{(4)}(0)=16
\end{aligned}
$$

So the Taylor polynomial is

$$
1+0 \cdot x+\frac{-4}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{16}{4!} x^{4}=1-2 x^{2}+\frac{2}{3} x^{4}
$$

B) Using the general formula for $(1+x)^{p}$, the first three terms are all nonzero for $p=1 / 3$:

$$
1+\frac{1}{3} x+\frac{\left(\frac{1}{3}\right)\left(\frac{-2}{3}\right)}{2} x^{2}=1+\frac{1}{3} x-\frac{1}{9} x^{2}
$$

(You would get the same thing by computing the Taylor polynomial of degree 2 using the method of part A too.)
III.
A) It's slope field 2 for the following reason. $\frac{d y}{d x}=(y-1)(y-5)$ has zero slopes (equilibrium solutions) along the lines $y=1$ and $y=5$. Slope field 1 doesn't do that (slope is not zero along $y=1$). There are other ways to tell too, from the signs slopes at various y-values.
B) For slope field 1, the solution with $y(0)=3$ increases up to a horizontal asymptote at $y=5$. For slope field 2 , the solution with $y(0)=3$ decreases to a horizontal asymptote at $y=1$.
C) Separating variables we have

$$
\int \frac{d y}{y}=\int \frac{d x}{x(x+1)}
$$

The integral on the right can be done with $\# 26$ from the table or by the partial fraction method:

$$
\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}
$$

so

$$
\ln |y|=\ln |x|-\ln |x+1|+c
$$

Exponentiating both sides,

$$
y=k\left(\frac{x}{x+1}\right)
$$

where $k= \pm e^{c}$.
IV.
A) The given information says that if Q is the number of bacteria as a function of time, then $\frac{d Q}{d t}=k Q$. This is exponential growth, so

$$
Q(t)=Q(0) e^{k t}=200 e^{k t}
$$

B) We know

$$
360=Q(.5)=200 e^{(.5) k} \Rightarrow k=\frac{1}{.5} \ln (360 / 200) \doteq 1.1756
$$

So then we want to solve

$$
10000=200 e^{(1.1756) t} \Rightarrow t=\frac{1}{1.1756} \ln (10000 / 200) \doteq 3.33
$$

(hours).

