Mathematics 134 - Intensive Calculus for Science 2
Discussion 2 - Practice on Integrals by Parts Answers
February 14, 2006

Integrals

Group 1:

$$
\int x \cos (4 x) d x
$$

Answer: Let $u=x, d v=\cos (4 x) d x$

$$
\frac{x}{4} \sin (4 x)+\frac{1}{16} \cos (4 x)+C
$$

Group 2:

$$
\int x(\ln x)^{2} d x
$$

Answer: Let $u=(\ln x)^{2}, d v=x d x$ to start. After two applications of parts you should get:

$$
\frac{x^{2}}{2}(\ln x)^{2}-\frac{x^{2}}{2} \ln x+\frac{x^{2}}{4}+C
$$

Group 3:

$$
\int x \sqrt{5 x+3} d y
$$

Answer: Let $u=x, d v=\sqrt{5 x+3} d x$

$$
\frac{2 x}{15}(5 x+3)^{3 / 2}-\frac{4}{375}(5 x+3)^{5 / 2}+C
$$

Group 4:

$$
\int \theta^{2} \sin (2 \theta) d \theta
$$

Answer: Let $u=\theta^{2}, d v=\sin (2 \theta) d \theta$ to start. After two applications of parts, you should get:

$$
\frac{-\theta^{2}}{2} \cos (2 \theta)+\frac{\theta}{2} \sin (2 \theta)+\frac{1}{4} \cos (2 \theta)+C
$$

Group 5:

$$
\int t^{2} e^{-3 t} d t
$$

Answer: Let $u=t^{2}, d v=e^{-3 t}$ to start. After two applications of parts, you should get:

$$
\frac{-t^{2}}{3} e^{-3 t}-\frac{2 t}{9} e^{-3 t}-\frac{2}{27} e^{-3 t}+C
$$

Group 6:

$$
\int \frac{\ln (x)}{x^{2}} d x
$$

Answer: Let $u=\ln x, d v=x^{-2} d x$

$$
\frac{-1}{x} \ln x-\frac{1}{x}+C
$$

Group 7:

$$
\int x^{5} \cos \left(x^{3}\right) d x
$$

Hint: The $\cos \left(x^{3}\right)$ should go in $d v$, but what "else" do you need to be able to find v ? Answer: Let $u=x^{3}$ and $d v=x^{2} \cos \left(x^{3}\right) d x$. The idea is to include the derivative of the x^{3} inside the cosine (up to a constant), so that you can find $v=\int d v$ by substitution.

$$
\frac{x^{3}}{3} \sin \left(x^{3}\right)+\frac{1}{3} \cos \left(x^{3}\right)+C
$$

Group 8:

$$
\int \arcsin (x) d x
$$

Answer: Let $u=\arcsin (x)$ and $d v=d x$. The idea is to include the derivative of the x^{3} inside the cosine (up to a constant), so that you can find $v=\int d v$ by substitution.

$$
x \arcsin (x)+\sqrt{1-x^{2}}+C
$$

