I. $f(x)$ is approximately exponential. With $f(x)=c a^{x}$, we have

$$
\begin{aligned}
& c a^{.3}=4.12 \\
& c a^{.6}=3.74
\end{aligned}
$$

So dividing, $a^{3} \doteq .908$ and $a \doteq(.908)^{10 / 3}=.724$. Then $c \doteq 4.12 /(.724)^{.3}=4.54$:

$$
f(x) \doteq 4.54(.724)^{x}
$$

$g(x)$ is linear since the slope is constant: $\frac{g(.6)-g(.3)}{.6-.3}=-.8$ so $g(x)=(-.8)(x-.3)+$ $4.31=-.8 x+4.55:$

$$
g(x)=-.8 x+4.55
$$

II. A) The graph is sinusoidal with period 4 , amplitude 5 and vertical shift +3 :

$$
f(x)=5 \sin \left(\frac{2 \pi x}{4}\right)+3=5 \sin \left(\frac{\pi x}{2}\right)+3
$$

B) The function has an inverse function if we restrict to $-1 \leq x \leq 1$ because that portion of the graph passes the horizontal line test: horizontal lines $y=k$ for $-2 \leq k \leq 8$ intersect that section of the graph exactly once. The domain of the inverse function is $-2 \leq x \leq 8$.
III.
A)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-(x+h)+3-5 x^{2}+x-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}-x-h+3-5 x^{2}+x-3}{h} \\
& =\lim _{h \rightarrow 0} 10 x-1+5 h \\
& =10 x-1 .
\end{aligned}
$$

B) By the chain rule and the rule for exponential functions:

$$
g^{\prime}(x)=3^{x} \ln (3)-\frac{1}{x^{3}+x} \cdot\left(3 x^{2}+1\right)=3^{x} \ln (3)-\frac{3 x^{2}+1}{x^{3}+x}
$$

C) Rewrite $h(x)$ using powers: $h(x)=3 x^{1 / 5}+7 x^{-1 / 3}+3 x^{8}$. Then

$$
h^{\prime}(x)=\frac{3}{5} x^{-4 / 5}-\frac{7}{3} x^{-4 / 3}+24 x^{7}
$$

D) By the quotient rule:

$$
i^{\prime}(x)=\frac{\left(\sin ^{2}(x)-1\right)(-\sin (x))-\cos (x) \cdot 2 \sin (x) \cos (x)}{\left(\sin ^{2}(x)-1\right)^{2}}
$$

E)

$$
j^{\prime}(x)=\frac{1}{1+(3 x+2)^{2}} \cdot 3
$$

F) Using implicit differentiation:

$$
2 y \frac{d y}{d x} \sqrt{x}+y^{2} \frac{1}{2 \sqrt{x}}-e^{y} \frac{d y}{d x}=0
$$

Solving for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=\frac{-y^{2} \frac{1}{2 \sqrt{x}}}{2 y \sqrt{x}-e^{y}}=\frac{-y^{2}}{4 x y-2 \sqrt{x} e^{y}}
$$

IV.
A) f is increasing on intervals where $f^{\prime}(x) \geq 0$, so here for all $x>-.5 . f$ is decreasing where $f^{\prime}(x)<0$, so $x<-.5$.
B) $y=f(x)$ is concave up on intervals where $f^{\prime \prime}(x)>0$, or equivalently, where $f^{\prime}(x)$ is increasing: $x<0$ and $x>1 . y=f(x)$ is concave down on intervals where $f^{\prime}(x)$ is decreasing: $0<x<1$.
C) The graph should be parabolic in shape with x-axis intercepts at $x=0, x=1$, opening up. The vertex of the parabola should be at $x=.5$.
V. A) The temperature at time $t=0$ is $H(0)=70-50=20$ degrees.
B) The rate of change of the temperature at time $t=10$ is $H^{\prime}(10)=5 e^{-10 / 10} \doteq 1.84$ degrees F per minute.
C) The temperature reaches 60 degrees when

$$
60=70-50 e^{-t / 10} \Rightarrow \frac{-10}{-50}=e^{\frac{-t}{10}} \Rightarrow t=-10 \ln (1 / 5) \doteq 16.1
$$

minutes.
VI. By the product and chain rules, $f^{\prime}(x)=-e^{-x} \sin (x)+e^{-x} \cos (x)=e^{-x}(\cos (x)-$ $\sin (x))$. For $0 \leq x \leq \pi$, the only solution of $f^{\prime}(x)=0$ is $x=\pi / 4$. Then

$$
f(0)=0 \quad f(\pi / 4)=e^{-\pi / 4} \sin (\pi / 4) \doteq .322 \quad f(\pi)=0
$$

so the minimum value is 0 and the maximum value is $e^{-\pi / 4} \sin (\pi / 4)$.
VII. A) The cost to build the pipeline is 3 times the distance under water, plus 2 times the distance along the shore:

$$
C(x)=3 \sqrt{4+x^{2}}+2(6-x)
$$

B) We find the critical points of C :

$$
C^{\prime}(x)=\frac{3}{2}\left(4+x^{2}\right)^{-1 / 2}(2 x)-2=\frac{3 x}{\sqrt{x^{2}+4}}-2
$$

This is zero when

$$
3 x=2 \sqrt{x^{2}+4} \Rightarrow 9 x^{2}=4 x^{2}+16 \Rightarrow 5 x^{2}=16
$$

So $x=\frac{4}{\sqrt{5}} \doteq 1.79$ (ignore the negative root since it clearly cannot give a minimium of the cost!). This is a minimum by the 1st derivative test: $C^{\prime}(1)=\frac{3}{\sqrt{5}}-2 \doteq-.66<0$ while $C^{\prime}(2)=\frac{6}{\sqrt{8}}-2 \doteq .12>0$. The pipeline of minimum cost goes from the island to the point with $x=1.79$ miles along the shore.
VIII. The volume of the cube is $V=x^{3}$ where x is the length of the side. So

$$
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}
$$

when $V=216, x=\sqrt[3]{216}=6$, and $\frac{d V}{d t}=-10$, so

$$
-10=3(6)^{2} \frac{d x}{d t} \Rightarrow \frac{d x}{d t}=\frac{-10}{108}=\frac{-5}{54}
$$

The side of the cube is decreasing at $\doteq .093 \mathrm{~cm} / \mathrm{min}$.

