I. $f(x)=x e^{-x^{2}}$.
A) By the product and chain rules:

$$
f^{\prime}(x)=e^{-x^{2}}+x e^{-x^{2}}(-2 x)=\left(1-2 x^{2}\right) e^{-x^{2}}
$$

B) The critical points of f occur when $1-2 x^{2}=0$, so $x=\frac{ \pm 1}{\sqrt{2}}=\frac{ \pm \sqrt{2}}{2} \doteq \pm .707$. Of these, only $-\sqrt{2} / 2 \doteq-.707$ is in our interval. Evaluating f at the critical point and at the endpoints:

$$
\begin{aligned}
f(-2) & =-2 e^{-4} \doteq-.0366 \\
f(-\sqrt{2} / 2) & =-\sqrt{2} / 2 \cdot e^{-1 / 2} \doteq-.4289 \\
f(0)=0 &
\end{aligned}
$$

So the maximum value is $f(0)=0$ and the minimum is $f(-\sqrt{2} / 2)=-\sqrt{2} / 2 \cdot e^{-1 / 2} \doteq$ -.4289 .
C) Yes it does. From the form of f^{\prime} we can see that f^{\prime} changes from negative to positive at $-\sqrt{2} / 2$, so by the First Derivative Test, this is a local minimum.
II.
A) By the quotient rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(\cos (x)+\sin (x)) \cos (x)-\sin (x)(-\sin (x)+\cos (x))}{(\sin (x)+\cos (x))^{2}} \\
& =\frac{\cos ^{2}(x)+\sin (x) \cos (x)+\sin ^{2}(x)-\sin (x) \cos (x)}{(\sin (x)+\cos (x))^{2}} \\
& =\frac{1}{(\sin (x)+\cos (x))^{2}}
\end{aligned}
$$

B) By the rule for natural \log plus the chain rule:

$$
g^{\prime}(x)=\frac{1}{3 x+\frac{1}{x}}\left(3-\frac{1}{x^{2}}\right)=\frac{3 x^{2}-1}{3 x^{3}+x}
$$

C) By the rule for arcsin and the chain rule:

$$
h^{\prime}(x)=\frac{1}{\sqrt{1-(4 x)^{2}}} \cdot 4=\frac{4}{\sqrt{1-16 x^{2}}}
$$

D) By implicit differentiation (using product rule):

$$
y^{2}+2 x y \frac{d y}{d x}+2 x y+x^{2} \frac{d y}{d x}=0
$$

Solving for $\frac{d y}{d x}$:

$$
\left(2 x y+x^{2}\right) \frac{d y}{d x}=-2 x y-y^{2}
$$

so

$$
\frac{d y}{d x}=\frac{-2 x y-y^{2}}{2 x y+x^{2}}
$$

III. Call the dimensions of the rectangle x, y (in yards). Say x is the side parallel to the existing fence. Then we have $x y=500$ and we want to minimize $L=x+2 y=x+\frac{1000}{x}$. Then $L^{\prime}=1-\frac{1000}{x^{2}}=0$ when $x=\sqrt{1000}=10 \sqrt{10}$. This is a minimum, since it is the only critical point with positive x, and $L^{\prime \prime}=\frac{1000}{x^{3}}$, so $L^{\prime \prime}>0$ for all $x>0$. The dimensions of the lot with minimum fence are $x=10 \sqrt{10} \doteq 31.6$ and $y=5 \sqrt{10} \doteq 15.8$ (from $x y=5000$).
IV. For the sphere, $V=\frac{4 \pi}{3} r^{3}$. So taking time derivatives:

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

We are given $\frac{d r}{d t}=3$, so when $r=6$,

$$
\frac{d V}{d t}=4 \pi \cdot(6)^{2} \cdot 3=432 \pi
$$

(units are $\mathrm{mm}^{3} / \mathrm{min}$).

