I. First note that \(f \) cannot be either linear or exponential because it is increasing for some \(x \) and decreasing for other \(x \).

A) \(g(x) \) is the only linear function, because it is the only one with constant slope. Using the first two points for instance \(m = \frac{28-2}{-2} = \frac{5}{2} \). The \(y \)-intercept is 28 from the table so \(g(x) = \frac{5}{2}x + 28 \).

B) \(h(x) \) is exponential. This can be seen because the ratios of successive values is constant:

\[
\frac{18}{2} = \frac{2}{2/9} = \frac{2/9}{2/81} = \frac{2/81}{2/729} = 9.
\]

To find the formula, we try to determine \(a, b \) to match the table with \(h(x) = ba^x \).
From \(h(0) = 2 \), we get \(2 = ba^0 = b \). Then from \(h(-2) = 18 \) we get \(18 = 2a^{-2} \) so \(9 = a^{-2} \), so \(a^2 = 1/9 \), and \(a = 1/3 \). The formula is \(h(x) = 2 \left(\frac{1}{3} \right)^x \).

II. Because the “Explosium” decays exponentially, we know the amount is given by a formula \(Q(t) = Q_0e^{kt} \) or \(Q(t) = Q_0a^t \). Either form can be used, and we will show how to do the problem using both of them.

Method 1. Using \(Q(t) = Q_0e^{kt} \), the initial amount is \(Q_0 = 10 \), and the half-life is 12 years so

\[
\frac{5}{10} = e^{k \cdot 12},
\]

\[
\frac{1}{2} = e^{12k},
\]

\[
\ln(1/2) = 12k,
\]

\[
\frac{\ln(1/2)}{12} = k.
\]

Then we want to determine the time \(t \) when \(Q(t) = 1 \):

\[
1 = 10e^{\frac{\ln(1/2)}{12}t},
\]

\[
1/10 = e^{\frac{\ln(1/2)}{12}t},
\]

\[
\ln(1/10) = \frac{\ln(1/2)}{12}t,
\]

\[
\frac{12\ln(1/10)}{\ln(1/2)} = t.
\]

Method 2. Using \(Q(t) = Q_0a^t \), we have \(Q = 10a^t \) and substituting \(t = 12 \) (the half-life) we get \(5 = 10a^{12} \), so \(a = \left(\frac{1}{2} \right)^{1/12} \) and \(Q = 10 \left(\frac{1}{2} \right)^{1/12} \). Then as before we want
to solve for t in the equation $1 = 10 \left(\frac{1}{2} \right)^{t/12}$. We get:

$$1/10 = \left(\frac{1}{2} \right)^{t/12}$$

$$\ln(1/10) = (t/12)\ln(1/2)$$

$$12\ln(1/10) = t$$

(which agrees with the other method, of course!)

III. A) Because this plot is sinusoidal, with a maximum at $x = 0$, it is simplest to use
the form $y = A \cos(Bx) + C$. The amplitude $A = (5 - (-3))/2 = 4$. The period is 1, so
$2\pi/B = 1$ and $B = 2\pi$. The graph is also shifted vertically by $C = -1$:

$$y = 4 \cos(2\pi x) - 1.$$

B) This graph looks like a polynomial of degree 3 since there are 2 turning points, a double
root at $x = 1$, and a root at $x = 2$. This gives $y = k(x - 1)^2(x - 2)$ for some constant
k. Since the graph “starts high and finishes low” we know $k < 0$. The exact value can be
determined because the graph shows the y-intercept at $y = 6$:

$$6 = k(0 - 1)^2(0 - 2) = -2k$$

So $k = -3$ and the formula is

$$y = -3(x - 1)^2(x - 2).$$

IV. The graph $y = 10^{x+1}$ is an exponential growth curve (shifted left by 1). So it does
pass the horizontal line test (horizontal lines $y = c > 0$ intersect the graph exactly once).
This says there is an inverse function. To find the formula, interchange x and y then solve
for y taking logarithms:

$$x = 10^{y+1}$$

$$\ln(x) = (y + 1)\ln(10)$$

$$\frac{\ln(x)}{\ln(10)} = y + 1$$

$$\frac{\ln(x)}{\ln(10)} - 1 = y$$

The inverse function is $f^{-1}(x) = \frac{\ln(x)}{\ln(10)} - 1$.

V. A) $r(x)$ has vertical asymptotes where the bottom is zero: $16 - x^2 = 0$, so $x = \pm 4$.
B) $r(x)$ has a horizontal asymptote at $y = -2$ because as $x \to \pm\infty$,

$$\frac{2x^2 - x}{16 - x^2} = \frac{2 - \frac{1}{x}}{16x^2 - 1} \to -2$$

C) The graph $y = r(x)$ crosses the x-axis where the top is zero: $0 = 2x^2 - x = x(2x - 1)$,
so $x = 0$ or $x = 1/2$.

2