

Proposition 2 If $\overleftrightarrow{P Q}$ is parallel to $\overleftrightarrow{A B}$ in the direction of B (according to Gauss's definition of parallelism), then $\overleftrightarrow{A B}$ is also parallel to $\overleftrightarrow{P Q}$ in the direction of Q, provided B, Q are on the same side of the segment $A P$.

The construction:

- Drop $A R \perp P Q$
- Say S is in $A B Q R \subset A B Q P$. The goal is to show that $\overleftrightarrow{A S}$ meets $\overleftrightarrow{P Q}$. Call $\angle S A B=\alpha$.
- Choose C so that $\angle R A C=\frac{1}{2} \alpha$
- Assume $\overrightarrow{A C}$ meets $\overleftrightarrow{P Q}$ at D.
- Let $R E=R D$, with E on the other side of D. Hence $\angle S A B=$ $\angle E A D=\alpha$ and $A E=A D$. (Why?)
- Choose F so $\angle A D F=\angle A E D$. Since $\overleftrightarrow{P Q}$ is the parallel to $\overleftrightarrow{A B}$ in the direction of B, the line $\overleftrightarrow{D F}$ meets the line $\overleftrightarrow{A B}$ at some point G (see Proposition 1 from Monday).
- Let H be on $\overleftrightarrow{P Q}$ with $E H=D G$ and join $A H$.

Claim. $\triangle A E H$ (outlined in blue) $\cong \triangle A D G$ (outlined in red). (Why?)
Conclusion. $\angle G A H=\angle G A S$, so S is on the line $\overleftrightarrow{A H}$, which meets $\overleftrightarrow{P Q}$, which is what we wanted to show. (Why?)
What if $\overrightarrow{A C}$ does not meet $\overleftrightarrow{P Q}$?

