

Proposition 2 If \overrightarrow{PQ} is parallel to \overrightarrow{AB} in the direction of B (according to Gauss's definition of parallelism), then \overleftarrow{AB} is also parallel to \overrightarrow{PQ} in the direction of Q, provided B, Q are on the same side of the segment AP.

The construction:

- Drop $AR \perp PQ$
- Say S is in $ABQR \subset ABQP$. The goal is to show that \overleftrightarrow{AS} meets \overleftrightarrow{PQ} . Call $\angle SAB = \alpha$.
- Choose C so that $\angle RAC = \frac{1}{2}\alpha$
- Assume \overrightarrow{AC} meets \overleftarrow{PQ} at D.
- Let RE = RD, with E on the other side of D. Hence $\angle SAB = \angle EAD = \alpha$ and AE = AD. (Why?)
- Choose F so $\angle ADF = \angle AED$. Since \overrightarrow{PQ} is the parallel to \overrightarrow{AB} in the direction of B, the line \overrightarrow{DF} meets the line \overrightarrow{AB} at some point G (see Proposition 1 from Monday).
- Let H be on \overleftrightarrow{PQ} with EH = DG and join AH.

Claim. ΔAEH (outlined in blue) $\cong \Delta ADG$ (outlined in red). (Why?)

Conclusion. $\angle GAH = \angle GAS$, so S is on the line \overleftarrow{AH} , which meets \overleftarrow{PQ} , which is what we wanted to show. (Why?) What if \overrightarrow{AC} does not meet \overleftarrow{PQ} ?