

Figure 1: Figure for Propositition 3.
Proposition 3 If $\overleftrightarrow{P Q}$ is parallel to $\overleftrightarrow{A B}$ in the direction of B and $\overleftrightarrow{U V}$ is parallel to $\overleftrightarrow{\longrightarrow Q}$ in the direction of Q (on the same side as B), then $\overleftrightarrow{U V}$ is parallel to $\overleftrightarrow{A B}$.
(In other words, parallelism is transitive.) There are two cases, depending on whether $\overleftrightarrow{P Q}$ lies between the two other lines or outside the region between them. We will do the first of these; for the other, refer to McCleary's text.

- $P A \perp \overleftrightarrow{A B}$ and $U P \perp \overleftrightarrow{P Q}$ as in the Figure above
- Say S is in $P Q V U$. The goal is to show that $\overleftrightarrow{U S}$ meets $\overleftrightarrow{A B}$
- Since $\overleftrightarrow{U V}$ is parallel to $\overleftrightarrow{P Q}$ in the direction of Q, line $\overleftrightarrow{U S}$ meets $\overleftrightarrow{P Q}$ at some point T. If we continue that line across $\overleftrightarrow{P Q}$, then by Proposition 1 from last time, the line must continue and meet $\overleftrightarrow{A B}$.
- On the other hand, suppose S is in $A B Q P$.
- Postulate I says we can join $U S$ with a line segment crossing $\overleftrightarrow{P Q}$ at some T and Proposition 1 again shows that line must continue and cross $\overleftrightarrow{A B}$

Figure 2: Figure for Proposition 4.

Proposition 4 The angles of parallelism $\Pi(A P)$ in the direction of B and $\Pi(A P)$ in the direction of B^{\prime} are equal if B, B^{\prime} lie along the same line through A, but on opposite sides of A.

- The proof consists of showing that the angles $\angle A P S$ with S on the right side of $P A$ yielding lines that meet $\overleftrightarrow{A B}=\overleftrightarrow{A B^{\prime}}$ are exactly the same as the angles $\angle A P S^{\prime}$ with S^{\prime} on the other side yielding lines that meet $\overleftrightarrow{A B}$.
- Suppose $\overrightarrow{P S}$ meets $\overrightarrow{A B}$ at C.
- Lay off a segment $A C^{\prime}=A C$ on the other side of $P A$ and join $P C^{\prime}$.
- Then $\triangle P A C \cong \triangle P A C^{\prime}$ (why?)
- This shows that $\angle S^{\prime} P A=\angle S P A$ is the same angle on the other side and the line through S^{\prime} meets $\overleftrightarrow{A B^{\prime}}$ at C^{\prime}
- Hence the angles that "work" on the left contain all the angles that "work" on the right.
- Now, reverse the roles of the two sides and repeat the same argument.

Figure 3: Figure for Proposition 6.

Proposition 5 The angle of parallelism $\Pi(A P)$ depends only on the length of the segment $A P$ and not on the exact locations of the points A or P.

Proposition 6 If Saccheri's HAA holds and $A P>A Q$, then $\Pi(A P)<$ $\Pi(A Q)$. (That is, the angle of parallelism is monotone decreasing as a function of the length AP.

- The proof of Proposition 6 consists of showing that both $\Pi(A P)=$ $\Pi(A Q)$ and $\Pi(A P)>\Pi(A Q)$ lead to contradictions.
- If $\Pi(A P)=\Pi(A Q)$, then the result from Euclid I. 27 shows that the parallels $\overrightarrow{Q Q^{\prime}}$ and $\overrightarrow{P P^{\prime}}$ are themselves parallel. This means they have a common perpendicular line and that contradicts Theorem 3.14 in McCleary (one of Saccheri's results assuming HAA).
- If $\Pi(A P)>\Pi(A Q)$, then refer to the Figure above.
- There exists R in $A B P^{\prime} P$ such that $\angle A P R=\angle A Q Q^{\prime}$ (angles marked in blue in the Figure)
- But then $\overrightarrow{P R}$ must meet $\overleftrightarrow{A B}$ at some point because that line lies below the parallel $\overleftrightarrow{P P^{\prime}}$, and it must also meet $\overleftrightarrow{Q Q^{\prime}}$.
- However the result of Euclid I. 27 says that $\overleftrightarrow{P R}$ and $\overleftrightarrow{Q Q^{\prime}}$ cannot meet since they are parallel in Euclid's sense.
- This is a contradiction and it finishes the proof.

