

Figure 1: Figure for Propositition 3.

Proposition 3 If \overrightarrow{PQ} is parallel to \overrightarrow{AB} in the direction of B and \overleftrightarrow{UV} is parallel to \overrightarrow{PQ} in the direction of Q (on the same side as B), then \overleftrightarrow{UV} is parallel to \overleftarrow{AB} .

(In other words, parallelism is transitive.) There are two cases, depending on whether \overrightarrow{PQ} lies between the two other lines or outside the region between them. We will do the first of these; for the other, refer to McCleary's text.

- $PA \perp \overleftrightarrow{AB}$ and $UP \perp \overleftrightarrow{PQ}$ as in the Figure above.
- Say S is in PQVU. The goal is to show that \overleftrightarrow{US} meets \overleftrightarrow{AB} .
- Since \overleftrightarrow{UV} is parallel to \overleftrightarrow{PQ} in the direction of Q, line \overleftrightarrow{US} meets \overleftrightarrow{PQ} at some point T. If we continue that line across \overleftrightarrow{PQ} , then by Proposition 1 from last time, the line must continue and meet \overleftrightarrow{AB} .
- On the other hand, suppose S is in ABQP.
- Postulate I says we can join US with a line segment crossing \overrightarrow{PQ} at some T and Proposition 1 again shows that line must continue and cross \overrightarrow{AB} .

Figure 2: Figure for Proposition 4.

Proposition 4 The angles of parallelism $\Pi(AP)$ in the direction of B and $\Pi(AP)$ in the direction of B' are equal if B, B' lie along the same line through A, but on opposite sides of A.

- The proof consists of showing that the angles $\angle APS$ with S on the right side of PA yielding lines that meet $\overrightarrow{AB} = \overrightarrow{AB'}$ are exactly the same as the angles $\angle APS'$ with S' on the other side yielding lines that meet \overrightarrow{AB} .
- Suppose \overrightarrow{PS} meets \overrightarrow{AB} at C.
- Lay off a segment AC' = AC on the other side of PA and join PC'.
- Then $\Delta PAC \cong \Delta PAC'$ (why?)
- This shows that $\angle S'PA = \angle SPA$ is the same angle on the other side and the line through S' meets $\overrightarrow{AB'}$ at C'.
- Hence the angles that "work" on the left contain all the angles that "work" on the right.
- Now, reverse the roles of the two sides and repeat the same argument.

Figure 3: Figure for Proposition 6.

Proposition 5 The angle of parallelism $\Pi(AP)$ depends only on the length of the segment AP and not on the exact locations of the points A or P.

Proposition 6 If Saccheri's HAA holds and AP > AQ, then $\Pi(AP) < \Pi(AQ)$. (That is, the angle of parallelism is monotone decreasing as a function of the length AP.

- The proof of Proposition 6 consists of showing that both $\Pi(AP) = \Pi(AQ)$ and $\Pi(AP) > \Pi(AQ)$ lead to contradictions.
- If $\Pi(AP) = \Pi(AQ)$, then the result from Euclid I.27 shows that the parallels $\overrightarrow{QQ'}$ and $\overrightarrow{PP'}$ are themselves parallel. This means they have a common perpendicular line and that contradicts Theorem 3.14 in McCleary (one of Saccheri's results assuming HAA).
- If $\Pi(AP) > \Pi(AQ)$, then refer to the Figure above.
- There exists R in ABP'P such that $\angle APR = \angle AQQ'$ (angles marked in blue in the Figure)
- But then \overrightarrow{PR} must meet \overleftarrow{AB} at some point because that line lies below the parallel $\overrightarrow{PP'}$, and it must also meet $\overrightarrow{QQ'}$.
- However the result of Euclid I.27 says that \overleftrightarrow{PR} and $\overleftrightarrow{QQ'}$ cannot meet since they are parallel in Euclid's sense.
- This is a contradiction and it finishes the proof.