MATH 392 - Geometry Through History<br>Problem Set 3<br>Due: Monday, February 29

I. Show under the assumption of HAA that given any angle $\angle A B C<180^{\circ}$, there is a line $\ell$ that is simultaneously parallel to $\overrightarrow{B A}$ in the direction of $A$ and to $\overrightarrow{B C}$ in the direction of $C$. Hint: use point (3) on page 47 of McCleary.
II. Note: All of the following facts about 3-dimensional geometry are proved in McCleary. Suggestion: try to work out proofs for yourselves using just properties following from Euclid's Postulates I-IV (not V), then use the text to check your work.
(A) Show that the following are equivalent for a line $\ell$ intersecting a plane $T$ at a point $P$.
(1) $\ell \perp T$ (i.e. $\ell$ meets every line through $P$ in $T$ at a right angle - see McCleary and the handout for Wednesday and Friday).
(2) There exist lines $m_{1} \neq m_{2}$ through $P$ in $T$ such that $\ell$ meets $m_{1}$ and $m_{2}$ at right angles.
(B) If $\ell \perp T$ with $\ell \cap T=P$, let $m$ be any line in $T$ and $A \in m$ such that $\overline{A P} \perp m$. If $B$ is any point on $\ell$, then $\overline{A B} \perp m$.
(C) If $T$ and $T^{\prime}$ are perpendicular planes, and $\ell$ is a line on $T$, then $\ell \perp T^{\prime}$ is equivalent to $\ell \perp m$ for $m=T \cap T^{\prime}$.
(D) If $\ell_{1} \perp T$ and $\ell_{2} \perp T$, then $\ell_{1}, \ell_{2}$ are coplanar and non-intersecting (but not necessarily parallel - this is a difference in the hyperbolic case!)
(E) Given a line $\ell$ and a plane $T$ not containing $\ell$, there exists a unique plane $T^{\prime}$ containing $\ell$ that is perpendicular to $T$.
III. Let $\cosh (t)=\frac{e^{t}+e^{-t}}{2}$ and $\sinh (t)=\frac{e^{t}-e^{-t}}{2}$ be the hyperbolic functions.
(A) Sketch the graphs $y=\cosh (t)$ and $y=\sinh (t)$. (Suggestion: plot $y=e^{t}$ and $y=e^{-t}$ first, then combine them in appropriate ways.)
(B) Show that $\lim _{t \rightarrow \pm \infty} \tanh (t)=1$ and sketch the graph $y=\tanh (t)$.
(C) Determine the Taylor series of the functions $\cosh (t)$ and $\sinh (t)$ at $t=0$.
(D) Show that $\cosh ^{2}(t)-\sinh ^{2}(t)=1$ for all real $t$. Explain why this shows that the parametric curve $x=\cosh (t), y=\sinh (t)$ lies on the hyperbola with equation $x^{2}-y^{2}=1$. What part of that hyperbola is obtained from the parametrization?
IV. Why is the formula

$$
\cosh (c / k)=\cosh (a / k) \cosh (b / k)
$$

called the hyperbolic form of the Pythagorean theorem? Hint: Use III, part (C) and think about what happens as $k \rightarrow \infty$.

