
MATH 392 – Geometry Through History
Solutions for Problem Set 2
Due: Friday, February 12

I. Proposition 30 in Book I of Euclid’s Elements says: Two lines that are parallel to the same line
are parallel to each other.

Here’s the proof Euclid provides: Let it be given that the lines
←→
AB and and

←→
EF are parallel

and the lines
←→
CD and

←→
EF are parallel. Pick any two points G on the line

←→
AB and K on the line←→

CD, draw the line segment GK (and extend it – Postulates I and II). Let H be the intersection of
the line

←→
GK with the line

←→
EF . Then ∠AGH = ∠FHG and ∠FHG = ∠DKG (Proposition 29).

Hence also ∠AGH = ∠DKG (Common Notion 1). Therefore,
←→
AB is parallel to

←→
CD (Proposition

27).

(A) There is a point here that is questionable in the sense that it does not really follow from any
of the Postulates or the previous results in Book I. What is this issue?

Solution: The issue is that Euclid states neither an axiom guaranteeing, nor a proof for the
statement that, the point H here must exist or that it can actually be constructed.

(B) To fix the problem you noted in part (A), prove the following statement: If a line intersects
one of a pair of parallel lines, then it intersects the other one as well. Hint: You should take
“line” here to mean a line extended as far as possible in both directions (Postulate 2). Argue
by contradiction and note that two lines that do not intersect are parallel by definition. Your
proof should make use of results that depend on Postulate V.

Solution: Let
←→
AB and

←→
CD be the parallel lines, suppose that G is a point on

←→
AB, the line←→

GH intersects
←→
AB at G, but

←→
GH is not equal to the line

←→
AB. We claim that

←→
GH must also

meet
←→
CD. Arguing by contradiction, suppose it does not meet

←→
CD. Then by definition

←→
GH

and
←→
CD are parallel. However, we know that the statement in the Playfair Postulate follows

from Postulates I-V. Namely given a line, like
←→
CD, and a point not on that line, like G, there

exists exactly one parallel to
←→
CD passing through G. Since we now know that

←→
AB and

←→
GH

are both parallel to
←→
CD and contain G, this implies that they must be the same line. But

that contradicts our assumption that
←→
AB and

←→
GH were different lines.

II. Give a proof of Proposition 35 in Book I of the Elements in the cases that the sides CD and
EF of the two parallelograms overlap. (See the slides on Book I.)

Solution: Let ABDC and ABFE be the parallelograms sharing the base AB and such that the
sides CD and EF lie along the same line parallel to the line containing AB. The case not considered
in class (or in Euclid) is the one where the point F lies between C and D, so the top edges of the
parallelgrams overlap. First note that the lengths satisfy EF = EC + CF and CD = CF + FD
in this case. In addition EF = CD = AB by Proposition I.34. Hence by Common Notion 3,
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EC = FD. Since
←→
AE and

←→
BF are parallel and

←→
AC and

←→
BD are parallel (Proposition I.33), it

follows that ∠AEC = ∠BFD and ∠ACE = ∠BDF (Proposition I.29). Hence ∆AEC ∼= ∆BFD
by Proposition I.26 (the AAS congruence). (There are, of course, several other ways to deduce
this using both SAS and SSS.) It follows that those two triangles have the same area. Now the
parallelograms ABDC and ABFE consist of two congruent triangles, plus the shared quadrilateral
ABFC. Hence they must have the same area (Common Notion 2), and that is what we wanted to
show.

III. Assume Postulates I - IV of the Elements hold. Consider the following statements:

(A) Euclid’s Postulate V.

(B) A line perpendicular to one ray of an acute angle intersects the other ray as well.

(C) Through any point in the interior of an angle less than a straight angle (180◦), there passes
a line meeting each of the two rays at points other than the vertex.

(D) The sum of the angles in any triangle is 180◦.

Show that all these statements are equivalent by showing that (A) ⇒ (B), (B) ⇒ (C), (C) ⇒ (D).
Hints: We know from class that (D) ⇒ (A). So once you show those three implications, all four
statements are equivalent. Also, see Problem 3.5 in McCleary, which gives an “attempted proof”
of Postulate V by A.-M. Legendre (1804). You can use this proof under the assumption that (C)
is true. Do you see why? And do you see why Legendre’s proof fails if we don’t know (C) is true?

Solutions:

(A)⇒ (B): Call the acute angle ∠BAC and suppose the perpendicular
←→
DC meets the ray

−→
AC

at the point C (taking D to be a point in the interior of the angle). The two lines
←→
DC and

←→
AB have the transversal line

←→
AC and the sum of the (interior) angles on the side toward the

angle is ∠BAC + ∠ACD < 180◦ (since ∠BAC is acute and ∠ACD = 90◦). Hence Postulate
V implies immediately that

←→
AB and

←→
AC meet on that side of the transversal line

←→
AC.

(B) ⇒ (C): Given the angle ∠ABC, construct
−−→
BD bisecting the angle (Proposition I.9). Let

P be any point in the interior of the angle ∠ABC and construct a line
←→
PQ through P meeting−−→

BD in a right angle (use Proposition I.11 if P is on the bisecting ray and I.12 otherwise).
Since we assumed ∠ABC was less than 180◦, both of the angles ∠ABD and ∠DBC are acute.
Moreover the line

←→
PQ crosses one ray of each of those angles. Therefore, it crosses the other

rays
−−→
BA and

−−→
BC at points different from B by (B).

(C) ⇒ (D): Refer to the diagram in Problem 3.5 in McCleary. The triangle ∆ABC is given
and we want to show that the angle sum is 180◦ exactly. By the Saccheri-Legendre theorem,
we know that angle sum is 180◦ − δ for some δ ≥ 0. So aiming for a contradiction, assume
δ > 0. Construct ∆BCD ∼= ∆ABC. Since D is in the interior of the angle ∠BAC, part (C)
implies there is a line through D that meets

−−→
AB at E and

−→
AC at F . Now consider the large
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triangle ∆AEF , made up of the four smaller triangles ∆ABC, ∆BED, ∆BCD, and ∆CDF .
Add up all of the angles in those four triangles in two ways. First, separate out the angles
from the large triangle ∆AEF and notice that the other angles form three groups each of
which adds to 180◦. The total is

∠EAF + ∠AFE + ∠FEA+ 540◦. (1)

On the other hand, if we add the angles one triangle at a time the total can be seen to be
equal to

(180◦ − δ) + (180◦ − δ) + (180◦ − ε1) + (180◦ − ε2). (2)

for some δ, ε1, ε2 ≥ 0. The first two parentheses come from ∆ABC and ∆BCD and the
others come from the remaining two triangles. We have used the Saccheri-Legendre theorem
for them. Comparing (1) and (2), we see that

∠EAF + ∠AFE + ∠FEA = 180◦ − 2δ − ε1 − ε2 ≤ 180◦ − 2δ.

Note the 2δ. This says that if we repeat the whole construction n times with the larger and
larger triangles we are considering then after n steps we will have a triangle whose angle sum
is ≤ 180◦ − 2nδ. If δ > 0, then this will be negative for n sufficiently large, and that is a
contradiction. Hence the only possible value is δ = 0 and that is what we wanted to show.

The interesting thing here historically is that Legendre essentially assumed the statement in
(C) was “obviously true” and used it without giving a justification. This problem shows that
the innocent-looking statement (C) is actually equivalent to Postulate V(!)
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