MATH 392 - Geometry Through History
Problem Set 2
Due: Friday, February 12

I. Proposition 30 in Book I of Euclid's Elements says: Two lines that are parallel to the same line are parallel to each other.

Here's the proof Euclid provides: Let it be given that the lines $A B$ and and $E F$ are parallel and the lines $C D$ and $E F$ are parallel. Pick any two points G on the line $A B$ and K on the line $C D$, and draw the line segment $G K$ (and extend it - Postulates I and II). Let H be the intersection of the line $G K$ with the line $E F$. Then $\angle A G H=\angle F H G$ and $\angle F H G=\angle D K G$ (Proposition 29). Hence also $\angle A G H=\angle D K G$ (Common Notion 1). Therefore, $A B$ is parallel to $C D$ (Proposition 27).
(A) There is a point here that is questionable in the sense that it does not really follow from any of the Postulates or the previous results in Book I. What is this issue?
(B) To fix the problem you noted in part (A), prove the following statement: If a line intersects one of a pair of parallel lines, then it intersects the other one as well. Hint: You should take "line" here to mean a line extended as far as possible in both directions (Postulate 2). Argue by contradiction and note that two lines that do not intersect are parallel by definition. Your proof should make use of results that depend on Postulate V.
II. Give a proof of Proposition 35 in Book I of the Elements in the cases that the sides $C D$ and $E F$ of the two parallelograms overlap. (See the slides on Book I.)
III. Assume Postulates I - IV of the Elements hold. Consider the following statements:
(A) Euclid's Postulate V.
(B) A line perpendicular to one ray of an acute angle intersects the other ray as well.
(C) Through any point in the interior of an angle less than a straight angle $\left(180^{\circ}\right)$, there passes a line meeting each of the two rays at points other than the vertex.
(D) The sum of the angles in any triangle is 180°.

Show that all these statements are equivalent by showing that $(A) \Rightarrow(B),(B) \Rightarrow(C),(C) \Rightarrow(D)$. Hints: We know from class that $(D) \Rightarrow(A)$. So once you show those three implications, all four statements are equivalent. Also, see Problem 3.5 in McCleary, which gives an "attempted proof" of Postulate V by A.-M. Legendre (1804). You can use this proof under the assumption that (C) is true. Do you see why? And do you see why Legendre's proof fails if we don't know (C) is true?

