
MATH 392 – Geometry Through History
Solutions for Problem Set 1

Friday, February 5

2.8.

(a) Proposition I.9: With straightedge and compass, one can bisect a given angle. Proof: Say the
angle is ∠ABC. Pick any one point P on the ray BA, and lay off a segment of length equal
to BA on the other ray BC (Proposition I.3). Call the end point of that segment Q, and join
PQ (Postulate I). Construct the equilateral triangle ∆PQR, with R on the opposite side of
PQ from B (Proposition I.1) and join BR. We claim that BR bisects 〈ABC. To prove this,
note that in ∆PBQ, we have ∠BPQ = ∠BQP since BP = BQ (Proposition I.5). For a
similar reason, in the equilateral triangle ∆PQR, ∠QPR = ∠PQR (Proposition I.5). Hence
by Common Notion 2,

∠BPR = ∠BPQ + ∠QPR = ∠BQP + ∠PQR = ∠BQR.

In addition, BP = BQ by construction and PR = QR since ∆PQR is equilateral. Hence
by SAS (Propositon I.4), ∆BPR ∼= ∆BQR. It follows that the corresponding angles ∠PBR
and ∠QBR are equal, so the segment BR bisects the angle ∠PBQ.

(b) Proposition I.10: One can bisect a given segment. Proof: Let AB be the line segment.
Construct the equilateral triangle ∆ABC (Proposition I.1). Construct CD bisecting ∠ACB
(Proposition I.9) and extend to E lying on the segment AB. (Note: That finding such a point
E is possible really doesn’t follow from any of Euclid’s axioms; for this you need something like
Pasch’s Axiom on page 17 of McCleary. We claim AE = EB, so we have bisected the segment
AB. To prove this, consider the triangles ∆ACE and ∆BCE. First, note that CA = CB
by the fact that ∆ABC is equilateral. Then ∠ACE = ∠BCE since CE is constructed to
bisect ∠ACB. Finally EC is common to the two triangles. Hence ∆ACE ∼= ∆BCE by SAS
(Proposition I.4). Therefore the corresponding sides AE and BE are equal, so E bisects AB.

(c) Proposition I.11: One can “erect” a perpendicular to a given line from any point on that
line. Proof: Call the point E and take A to be any point on the line other than E. Lay
off a line segment EB = EA on the other side of E along the line (Proposition I.3). Then
construct the equilateral triangle ∆ABC (Proposition I.1) and join CE (Postulate 1). We
claim ∠AEC and ∠BEC are right angles so EC is the required perpendicular. This follows
from the same proof given for Proposition I.10 in part (b). As there ∆ACE ∼= ∆BCE by
Proposition I.8 (SSS) Hence the corresponding angles ∠AEC and ∠BEC are equal. But also
∠AEC + ∠BEC = 2 right angles so each of ∠AEC and ∠BEC is a right angle (Common
Notion 3).

(d) Proposition I.18: In any triangle the greater side is opposite the greater angle. Proof: That
is, we have to show that if we have a triangle ∆ABC and (for instance) BC > AC, then
∠BAC > ∠ABC. Since AC < BC we can lay off a segment of length AC starting at C and
ending at a point D between B and C (Proposition I.3). Join AD (Postulate I). The triangle
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∆ADC is isosceles, so ∠CDA = ∠CAD. The angle ∠ADC is an exterior angle to the triangle
∆ABD. Hence by Proposition I.16, ∠CDA > ∠ABD. But also by Common Notion 5, we
have ∠BAC > ∠CAD. Putting these together we get ∠BAC > ∠CAD = ∠CDA > ∠ABD.
This is what we wanted to show.

2.9. Say AB and CD are two lines with transversal line AC and ∠BAC + ∠DCA < 180◦ (i.e.
less than two right angles). We need to show that AB and CD, if extended indefinitely will meet
on the side containing B and D. If not, then those two lines would be parallel (they cannot meet
on the other side of the transversal – the sum of the angles on that side is greater than two right
angles so the lines must diverge on that side by Proposition I.17). However, then Proposition I.29
implies that ∠DAC = ∠ECA (for any point E on the other side of C on the line CD. But then
Proposition I.13 implies ∠DCA = 180◦ − ∠ECA = 180◦ − ∠BAC, so ∠BAC + ∠DCA = 180◦,
which contradicts the hypothesis.

2.13. Let ∆ABC be inscribed in a circle with AB a diameter and C on a semicircle cut out by the
diameter. We claim ∠ACB is a right angle, assuming Postulate V. Let O be the center of the circle
which is a point on AB and join OC (Postulate 1). Then ∆AOC and ∆BOC are isosceles triangles
since OA = OC = OB (definition of a circle). By Proposition I.5, we have ∠OAC = ∠OCA and
∠OCB = ∠OBC. By Proposition I.32 (which depends on Postulate V), the sum of the angles in
∆ABC is equal to two right angles. But that sum equals 2(∠OCA + ∠OCB) = 2∠ACB. Hence
∠ACB is a right angle (Common Notion 3).

2.14. There is a solution in the back of McCleary’s book that uses several different sorts of con-
structions based on Euclid’s Proposition I.43 that we did not discuss. It has the merit of producing
what are probably the most efficient constructions. But there is also another way that is based
entirely on the fact proved in 2.13. Here’s an outline of this alternative method:

Step 0: First, note that given segments of lengths x > y, it is easy to construct segments of
lengths x + y and x − y by laying off segments along lines using Proposition I.3. Then note that
if we have any triangle ∆ABC with AB a diameter of the circumscribed circle, then ∠ACB is a
right angle. Hence if we drop the perpendicular CD from C to AB (using Proposition I.12) then
∆ABC, ∆ACD and ∆BCD are all similar triangles.

Step 1: given a segment AD of length x and a segment DB of length 1, make the segment AB
of length 1 + x, construct the circle with that diameter, and erect the perpendicular to AB from
the point D, call (one of) the intersection points with the circle C and consider the triangle ∆ABC
and the two smaller triangles ∆ACD and ∆BCD. These are similar by the observation above. If z
is the length of CD, then by the fact that corresponding parts of similar triangles are in the same
proportion:

x

z
=

z

1
, or x = z2.

This can be read two ways:

• If we know x, it gives a construction of z =
√

x.
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• On the other hand if we know z = DC, we can start from BD = 1, do the construction of
the perpendicular to the diameter, lay off DC on that line, construct the perpendicular line
to BC, find the point A where that intersects the BD extended, and call AD = x. This gives
a construction of z2 if we know z.

Step 2: Now suppose segments of lengths x > y are known. Consider this construction:

• Construct segments of lengths x + y and x− y using Step 0

• Construct segments of lengths (x + y)2 and (x− y)2 using Step 1,

• Construct a segment of length

(x + y)2 − (x− y)2 = 4xy

by Step 0 again

• Construction a segment of length xy by bisecting the previous segment twice (Proposition
I.10). Putting all of this together gives a construction of a segment of length xy.

The only remaining part is to construct a segment of length 1
x given a segment of length x. To do

this proceed as in the second part of Step 1, except make z = 1 and x the known segment along
the diameter of the circle. By similar triangles, if y is the remaining part of the diameter, we will
have

y

1
=

1
x

so y is the reciprocal of x.

3


