MATH 392 - Geometry Through History
 Solutions for Problem Set 1
 Friday, February 5

2.8.
(a) Proposition I.9: With straightedge and compass, one can bisect a given angle. Proof: Say the angle is $\angle A B C$. Pick any one point P on the ray $B A$, and lay off a segment of length equal to $B A$ on the other ray $B C$ (Proposition I.3). Call the end point of that segment Q, and join $P Q$ (Postulate I). Construct the equilateral triangle $\triangle P Q R$, with R on the opposite side of $P Q$ from B (Proposition I.1) and join $B R$. We claim that $B R$ bisects $\langle A B C$. To prove this, note that in $\triangle P B Q$, we have $\angle B P Q=\angle B Q P$ since $B P=B Q$ (Proposition I.5). For a similar reason, in the equilateral triangle $\triangle P Q R, \angle Q P R=\angle P Q R$ (Proposition I.5). Hence by Common Notion 2,

$$
\angle B P R=\angle B P Q+\angle Q P R=\angle B Q P+\angle P Q R=\angle B Q R .
$$

In addition, $B P=B Q$ by construction and $P R=Q R$ since $\triangle P Q R$ is equilateral. Hence by SAS (Propositon I.4), $\triangle B P R \cong \triangle B Q R$. It follows that the corresponding angles $\angle P B R$ and $\angle Q B R$ are equal, so the segment $B R$ bisects the angle $\angle P B Q$.
(b) Proposition I.10: One can bisect a given segment. Proof: Let $A B$ be the line segment. Construct the equilateral triangle $\triangle A B C$ (Proposition I.1). Construct $C D$ bisecting $\angle A C B$ (Proposition I.9) and extend to E lying on the segment $A B$. (Note: That finding such a point E is possible really doesn't follow from any of Euclid's axioms; for this you need something like Pasch's Axiom on page 17 of McCleary. We claim $A E=E B$, so we have bisected the segment $A B$. To prove this, consider the triangles $\triangle A C E$ and $\triangle B C E$. First, note that $C A=C B$ by the fact that $\triangle A B C$ is equilateral. Then $\angle A C E=\angle B C E$ since $C E$ is constructed to bisect $\angle A C B$. Finally $E C$ is common to the two triangles. Hence $\triangle A C E \cong \triangle B C E$ by SAS (Proposition I.4). Therefore the corresponding sides $A E$ and $B E$ are equal, so E bisects $A B$.
(c) Proposition I.11: One can "erect" a perpendicular to a given line from any point on that line. Proof: Call the point E and take A to be any point on the line other than E. Lay off a line segment $E B=E A$ on the other side of E along the line (Proposition I.3). Then construct the equilateral triangle $\triangle A B C$ (Proposition I.1) and join $C E$ (Postulate 1). We claim $\angle A E C$ and $\angle B E C$ are right angles so $E C$ is the required perpendicular. This follows from the same proof given for Proposition I. 10 in part (b). As there $\triangle A C E \cong \triangle B C E$ by Proposition I. 8 (SSS) Hence the corresponding angles $\angle A E C$ and $\angle B E C$ are equal. But also $\angle A E C+\angle B E C=2$ right angles so each of $\angle A E C$ and $\angle B E C$ is a right angle (Common Notion 3).
(d) Proposition I.18: In any triangle the greater side is opposite the greater angle. Proof: That is, we have to show that if we have a triangle $\triangle A B C$ and (for instance) $B C>A C$, then $\angle B A C>\angle A B C$. Since $A C<B C$ we can lay off a segment of length $A C$ starting at C and ending at a point D between B and C (Proposition I.3). Join $A D$ (Postulate I). The triangle
$\triangle A D C$ is isosceles, so $\angle C D A=\angle C A D$. The angle $\angle A D C$ is an exterior angle to the triangle $\triangle A B D$. Hence by Proposition I.16, $\angle C D A>\angle A B D$. But also by Common Notion 5, we have $\angle B A C>\angle C A D$. Putting these together we get $\angle B A C>\angle C A D=\angle C D A>\angle A B D$. This is what we wanted to show.
2.9. Say $A B$ and $C D$ are two lines with transversal line $A C$ and $\angle B A C+\angle D C A<180^{\circ}$ (i.e. less than two right angles). We need to show that $A B$ and $C D$, if extended indefinitely will meet on the side containing B and D. If not, then those two lines would be parallel (they cannot meet on the other side of the transversal - the sum of the angles on that side is greater than two right angles so the lines must diverge on that side by Proposition I.17). However, then Proposition I. 29 implies that $\angle D A C=\angle E C A$ (for any point E on the other side of C on the line $C D$. But then Proposition I. 13 implies $\angle D C A=180^{\circ}-\angle E C A=180^{\circ}-\angle B A C$, so $\angle B A C+\angle D C A=180^{\circ}$, which contradicts the hypothesis.
2.13. Let $\triangle A B C$ be inscribed in a circle with $A B$ a diameter and C on a semicircle cut out by the diameter. We claim $\angle A C B$ is a right angle, assuming Postulate V. Let O be the center of the circle which is a point on $A B$ and join $O C$ (Postulate 1). Then $\triangle A O C$ and $\triangle B O C$ are isosceles triangles since $O A=O C=O B$ (definition of a circle). By Proposition I.5, we have $\angle O A C=\angle O C A$ and $\angle O C B=\angle O B C$. By Proposition I. 32 (which depends on Postulate V), the sum of the angles in $\triangle A B C$ is equal to two right angles. But that sum equals $2(\angle O C A+\angle O C B)=2 \angle A C B$. Hence $\angle A C B$ is a right angle (Common Notion 3).
2.14. There is a solution in the back of McCleary's book that uses several different sorts of constructions based on Euclid's Proposition I. 43 that we did not discuss. It has the merit of producing what are probably the most efficient constructions. But there is also another way that is based entirely on the fact proved in 2.13 . Here's an outline of this alternative method:

Step 0: First, note that given segments of lengths $x>y$, it is easy to construct segments of lengths $x+y$ and $x-y$ by laying off segments along lines using Proposition I.3. Then note that if we have any triangle $\triangle A B C$ with $A B$ a diameter of the circumscribed circle, then $\angle A C B$ is a right angle. Hence if we drop the perpendicular $C D$ from C to $A B$ (using Proposition I.12) then $\triangle A B C, \triangle A C D$ and $\triangle B C D$ are all similar triangles.

Step 1: given a segment $A D$ of length x and a segment $D B$ of length 1 , make the segment $A B$ of length $1+x$, construct the circle with that diameter, and erect the perpendicular to $A B$ from the point D, call (one of) the intersection points with the circle C and consider the triangle $\triangle A B C$ and the two smaller triangles $\triangle A C D$ and $\triangle B C D$. These are similar by the observation above. If z is the length of $C D$, then by the fact that corresponding parts of similar triangles are in the same proportion:

$$
\frac{x}{z}=\frac{z}{1}, \text { or } x=z^{2} .
$$

This can be read two ways:

- If we know x, it gives a construction of $z=\sqrt{x}$.
- On the other hand if we know $z=D C$, we can start from $B D=1$, do the construction of the perpendicular to the diameter, lay off $D C$ on that line, construct the perpendicular line to $B C$, find the point A where that intersects the $B D$ extended, and call $A D=x$. This gives a construction of z^{2} if we know z.

Step 2: Now suppose segments of lengths $x>y$ are known. Consider this construction:

- Construct segments of lengths $x+y$ and $x-y$ using Step 0
- Construct segments of lengths $(x+y)^{2}$ and $(x-y)^{2}$ using Step 1,
- Construct a segment of length

$$
(x+y)^{2}-(x-y)^{2}=4 x y
$$

by Step 0 again

- Construction a segment of length $x y$ by bisecting the previous segment twice (Proposition I.10). Putting all of this together gives a construction of a segment of length $x y$.

The only remaining part is to construct a segment of length $\frac{1}{x}$ given a segment of length x. To do this proceed as in the second part of Step 1, except make $z=1$ and x the known segment along the diameter of the circle. By similar triangles, if y is the remaining part of the diameter, we will have

$$
\frac{y}{1}=\frac{1}{x}
$$

so y is the reciprocal of x.

