
MATH 392 – Geometry Through History
Solutions/Lecture Notes for Class Monday, February 8

Background

Recall that on Friday we had started into a rather complicated proof
of a result showing that the usual fact about the sum of the angles in a
triangle cannot be assumed if we want to try to prove Postulate V from the
other postulates. In fact, Postulates I-IV plus that statement is equivalent to
Postulates I-V as Euclid stated them. This proof is attributed to the medieval
Islamic mathematician Nasir al-Din al-Tusi (although this has sometimes
been questioned).

Theorem 1 Assume that Euclid’s Postulates I-IV (and all the additional
facts such as Pasch’s Axiom and the Axiom of Continuity that Euclid did
not state explicitly, but that are needed for complete proofs of Propositions
1 - 28) hold. Assume in addition that the angle sum in every triangle is
two right angles (180◦). Then the statement of Postulate V also holds (as a
theorem).

Questions

We said to start that, given a transversal line falling on two lines making
angles on one side summing to less than 180◦, (if necessary) we could replace
that transversal with a different transversal for which one of the angles was
a right angle and for which the angle sum on that one side did not change.
(Note that showing the two lines meet using this other transversal is sufficient
for what we are trying to show!)

I. Prove that we can always construct this other transversal. (Hint: Drop a
perpendicular. You will need to use the assumption that the angle sum in all
triangles is 180◦.)

Solution: Say the lines are AB and CD where AC is the transversal line
and 6 BAC + 6 DCA < 180◦. Drop a perpendicular AK to CD (where K is
the foot, a point lying on the line CD). In the triangle ∆AKC, note that
6 KAC + 6 ACK = 90◦ under the assumption that all triangles have angle
sum equal to 180◦. Using the line AK as the new transversal, we have angle
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6 BAK and the right angle 6 AKD. But

6 BAK + 90◦ = 6 BAK + 6 KAC + 6 ACK = 6 BAC + 6 ACD

so the sum of the angles for the new transversal is the same the angle sum
for the old transversal on that side. (This leads to a diagram like the one we
were considering in class last Friday.)

It will help to refer to the diagram we drew on the board, or to page 32 in
McCleary’s book.

Now, assuming the transversal line AC makes a right angle with one line CD
and an acute angle with the other line AB, we began the argument as follows:
Let G1 be an arbitrary point on the line AB on the side of the transversal
with the angle sum less than 180◦. Drop a perpendicular to the transversal
AC from G1 and call the foot H1. If AH1 > AC, then the line CD enters the
triangle ∆AH1G1 along the side AH1. The line CD is parallel to H1G1 since
both make right angles with AH1 (which is AC, extended). Hence Pasch’s
Axiom implies CD must exit the triangle ∆AH1G1 through the other side –
AG1 = the extension of AB – and we are done in this case.

II. Why can’t we just stop there? Why do we need to do the next part of the
argument?

Solution: We cannot just stop there since there is nothing in Postulates I -
IV (or Pasch’s Axiom for that matter) that implies directly that the point
G1 can be chosen so that AH1 > AC. In other words, the next steps are
necessary.

If AH1 ≤ AC, then we argued as follows. By the Axiom of Continuity,
(also called the Archimedean Axiom – see McCleary, p. 17), using Euclid’s
Proposition I.3, we can lay off enough equal segments

AH1 = H1H2 = · · · = Hn−1Hn

to make Hn lie “strictly past” C along the line AC (extended using Postulate
II). We can also lay off equal segments

AG1 = G1G2 = · · · = Gn−1Gn

(with the same number n) along the line AB (extending it as needed using
Postulate II). The theorem will be proved if we can show that for all i ≥ 2,
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the point Hi is the foot of the perpendicular dropped from Gi to the line
AC, extended to AHn. (Reason: We will have CD entering one side of the
triangle ∆AHnGn and we can argue as before, using Pasch’s Axiom, that the
line CD, extended using Postulate II, must exit that triangle along the side
AGn, which is the extension of the line AB.)

So we need to show that GiHi is perpendicular to AHn for all i = 2, . . . , n.
To start, suppose K is the foot of the perpendicular from G2 to AHn. We
must show K = H2.

III. Construct AL perpendicular to AH1 with AL = H1G1. Show that
6 G1AL = 6 AG1H1 (using the assumption about the angle sum in triangles).
Conclude that ∆G1H1A ∼= ∆G1LA, hence 6 G1LA is a right angle.

Solution: Extending AC beyond the line AL to a point N , we have 6 NAL =
90◦ and then

180◦ = 90◦ + 6 LAG1 + 6 G1AH1.

On the other hand, by the assumption about the angle sum in the triangle
∆G1H1A, we also have

180◦ = 6 G1H1A + 6 G1AH1 + 6 H1G1A = 90◦ + 6 G1AH1 + 6 H1G1A.

Comparing the last two equations yields 6 LAG1 = 6 H1G1A. Now we also
have AL = G1H1 by construction and the side AG1 is shared by the two
triangles ∆G1H1A and ∆G1LA. By SAS (Proposition I.4), the triangles are
congruent. It follows that the corresponding angles 6 G1H1A and 6 G1LA are
congruent, so they are both right angles.

Now construct a point M on the line segment KG2 so that KM = H1G1.

IV. Show that 6 H1G1K = 6 MKG1 (again use the assumption about angle
sums in a triangle). Deduce that ∆MG1K ∼= ∆H1KG1 and 6 KMG1 is a
right angle.

Solution: This is similar to step III above: At K we have a straight angle
along the line AC, so

180◦ = 90◦ + 6 MKG1 + 6 G1KH1

But in the triangle ∆H1KG1 we have

180◦ = 90◦ + 6 H1G1K + 6 G1KH1
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Combining these two equations, we get 6 MKG1 = 6 H1G1K. It follows by
SAS that ∆MG1K ∼= ∆H1KG1 since KM = H1G1 by construction and
the side G1K is common to the triangles. Then, the corresponding angles
6 KH1G1 and 6 KMG1 are equal, so 6 KMG1 is a right angle.

V. Explain why M,G1, and L must be collinear. (Note: that was not assumed,
but it follows from what we have done to this point.)

Solution: This follows because the sum

6 MG1K + 6 KG1H1 + 6 H1G1A + 6 AG1L

is 180◦. The first two add to 90◦ because they equal the other two angles
in one of the congruent right triangles ∆KMG1 or ∆KH1G1; and the other
two also add to 90◦ for the same sort of reason using the congruent right
triangles ∆G1H1A and ∆G1LA.

VI. Next, show that ∆MG2G1
∼= ∆LG1A. Which congruence criterion are

you using? Be sure it depends only on Postulates I - IV and Propositions 1
- 28.

Solution: Since 6 KMG1 is a right angle, so is 6 G1MG2. This is the same
as 6 G1LA by step III above. Moreover, 6 G2G1M = 6 AG1L since those
are two vertical angles at the intersection of two lines as in Proposition I.15
(A,G1, G2 lie along one line, and L,G1,M lie along another by step V).
Finally AG1 = G1G2 by construction. Hence ∆MG2G1

∼= ∆LG1A by ASA
(Proposition I.26 – note that that proposition comes before I.29, so it depends
only on Postulates I - IV(!))

VII. Now deduce that H1K = AH1 which implies that K = H2 from the
construction of the points Hi.

Solution: Using the triangle congruences from Steps IV, VI, III (in that
order) we have

H1K = MG1 = LG1 = AH1.

Since point H2 was constructed to make H1H2 = AH1, and K,H2 both lie
along the line AHn, we get K = H2.

VIII. What technique of proof would be most efficient to continue and show
Hi is the foot of the perpendicular from Gi to AHn for all i? Can you see
how that would go, without writing out all of the details?
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Solution: This would be a great candidate for a proof by mathematical in-
duction. What we did above is essentially the base case for the induction.
The induction step would be to prove that Hk is the foot of the perpendicular
to AHn through Gk, under the assumption that Hk−1 is the foot of the per-
pendicular to AHn through Gk−1. The proof would be similar, but it would
require considering more triangles.
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