MATH 392 - Geometry Through History Solutions/Lecture Notes for Class Monday, February 8

Background

Recall that on Friday we had started into a rather complicated proof of a result showing that the usual fact about the sum of the angles in a triangle cannot be assumed if we want to try to prove Postulate V from the other postulates. In fact, Postulates I-IV plus that statement is equivalent to Postulates I-V as Euclid stated them. This proof is attributed to the medieval Islamic mathematician Nasir al-Din al-Tusi (although this has sometimes been questioned).

Theorem 1 Assume that Euclid's Postulates I-IV (and all the additional facts such as Pasch's Axiom and the Axiom of Continuity that Euclid did not state explicitly, but that are needed for complete proofs of Propositions 1 - 28) hold. Assume in addition that the angle sum in every triangle is two right angles $\left(180^{\circ}\right)$. Then the statement of Postulate V also holds (as a theorem).

Questions

We said to start that, given a transversal line falling on two lines making angles on one side summing to less than 180°, (if necessary) we could replace that transversal with a different transversal for which one of the angles was a right angle and for which the angle sum on that one side did not change. (Note that showing the two lines meet using this other transversal is sufficient for what we are trying to show!)
I. Prove that we can always construct this other transversal. (Hint: Drop a perpendicular. You will need to use the assumption that the angle sum in all triangles is 180°.)

Solution: Say the lines are $A B$ and $C D$ where $A C$ is the transversal line and $\angle B A C+\angle D C A<180^{\circ}$. Drop a perpendicular $A K$ to $C D$ (where K is the foot, a point lying on the line $C D$). In the triangle $\triangle A K C$, note that $\angle K A C+\angle A C K=90^{\circ}$ under the assumption that all triangles have angle sum equal to 180°. Using the line $A K$ as the new transversal, we have angle
$\angle B A K$ and the right angle $\angle A K D$. But

$$
\angle B A K+90^{\circ}=\angle B A K+\angle K A C+\angle A C K=\angle B A C+\angle A C D
$$

so the sum of the angles for the new transversal is the same the angle sum for the old transversal on that side. (This leads to a diagram like the one we were considering in class last Friday.)

It will help to refer to the diagram we drew on the board, or to page 32 in McCleary's book.

Now, assuming the transversal line $A C$ makes a right angle with one line $C D$ and an acute angle with the other line $A B$, we began the argument as follows: Let G_{1} be an arbitrary point on the line $A B$ on the side of the transversal with the angle sum less than 180°. Drop a perpendicular to the transversal $A C$ from G_{1} and call the foot H_{1}. If $A H_{1}>A C$, then the line $C D$ enters the triangle $\triangle A H_{1} G_{1}$ along the side $A H_{1}$. The line $C D$ is parallel to $H_{1} G_{1}$ since both make right angles with $A H_{1}$ (which is $A C$, extended). Hence Pasch's Axiom implies $C D$ must exit the triangle $\Delta A H_{1} G_{1}$ through the other side $A G_{1}=$ the extension of $A B-$ and we are done in this case.
II. Why can't we just stop there? Why do we need to do the next part of the argument?

Solution: We cannot just stop there since there is nothing in Postulates I IV (or Pasch's Axiom for that matter) that implies directly that the point G_{1} can be chosen so that $A H_{1}>A C$. In other words, the next steps are necessary.

If $A H_{1} \leq A C$, then we argued as follows. By the Axiom of Continuity, (also called the Archimedean Axiom - see McCleary, p. 17), using Euclid's Proposition I.3, we can lay off enough equal segments

$$
A H_{1}=H_{1} H_{2}=\cdots=H_{n-1} H_{n}
$$

to make H_{n} lie "strictly past" C along the line $A C$ (extended using Postulate II). We can also lay off equal segments

$$
A G_{1}=G_{1} G_{2}=\cdots=G_{n-1} G_{n}
$$

(with the same number n) along the line $A B$ (extending it as needed using Postulate II). The theorem will be proved if we can show that for all $i \geq 2$,
the point H_{i} is the foot of the perpendicular dropped from G_{i} to the line $A C$, extended to $A H_{n}$. (Reason: We will have $C D$ entering one side of the triangle $\Delta A H_{n} G_{n}$ and we can argue as before, using Pasch's Axiom, that the line $C D$, extended using Postulate II, must exit that triangle along the side $A G_{n}$, which is the extension of the line $A B$.)

So we need to show that $G_{i} H_{i}$ is perpendicular to $A H_{n}$ for all $i=2, \ldots, n$. To start, suppose K is the foot of the perpendicular from G_{2} to $A H_{n}$. We must show $K=H_{2}$.
III. Construct $A L$ perpendicular to $A H_{1}$ with $A L=H_{1} G_{1}$. Show that $\angle G_{1} A L=\angle A G_{1} H_{1}$ (using the assumption about the angle sum in triangles). Conclude that $\Delta G_{1} H_{1} A \cong \Delta G_{1} L A$, hence $\angle G_{1} L A$ is a right angle.

Solution: Extending $A C$ beyond the line $A L$ to a point N, we have $\angle N A L=$ 90° and then

$$
180^{\circ}=90^{\circ}+\angle L A G_{1}+\angle G_{1} A H_{1} .
$$

On the other hand, by the assumption about the angle sum in the triangle $\Delta G_{1} H_{1} A$, we also have

$$
180^{\circ}=\angle G_{1} H_{1} A+\angle G_{1} A H_{1}+\angle H_{1} G_{1} A=90^{\circ}+\angle G_{1} A H_{1}+\angle H_{1} G_{1} A .
$$

Comparing the last two equations yields $\angle L A G_{1}=\angle H_{1} G_{1} A$. Now we also have $A L=G_{1} H_{1}$ by construction and the side $A G_{1}$ is shared by the two triangles $\Delta G_{1} H_{1} A$ and $\Delta G_{1} L A$. By SAS (Proposition I.4), the triangles are congruent. It follows that the corresponding angles $\angle G_{1} H_{1} A$ and $\angle G_{1} L A$ are congruent, so they are both right angles.

Now construct a point M on the line segment $K G_{2}$ so that $K M=H_{1} G_{1}$.
IV. Show that $\angle H_{1} G_{1} K=\angle M K G_{1}$ (again use the assumption about angle sums in a triangle). Deduce that $\Delta M G_{1} K \cong \Delta H_{1} K G_{1}$ and $\angle K M G_{1}$ is a right angle.

Solution: This is similar to step III above: At K we have a straight angle along the line $A C$, so

$$
180^{\circ}=90^{\circ}+\angle M K G_{1}+\angle G_{1} K H_{1}
$$

But in the triangle $\Delta H_{1} K G_{1}$ we have

$$
180^{\circ}=90^{\circ}+\angle H_{1} G_{1} K+\angle G_{1} K H_{1}
$$

Combining these two equations, we get $\angle M K G_{1}=\angle H_{1} G_{1} K$. It follows by SAS that $\Delta M G_{1} K \cong \Delta H_{1} K G_{1}$ since $K M=H_{1} G_{1}$ by construction and the side $G_{1} K$ is common to the triangles. Then, the corresponding angles $\angle K H_{1} G_{1}$ and $\angle K M G_{1}$ are equal, so $\angle K M G_{1}$ is a right angle.
V. Explain why M, G_{1}, and L must be collinear. (Note: that was not assumed, but it follows from what we have done to this point.)

Solution: This follows because the sum

$$
\angle M G_{1} K+\angle K G_{1} H_{1}+\angle H_{1} G_{1} A+\angle A G_{1} L
$$

is 180°. The first two add to 90° because they equal the other two angles in one of the congruent right triangles $\Delta K M G_{1}$ or $\Delta K H_{1} G_{1}$; and the other two also add to 90° for the same sort of reason using the congruent right triangles $\Delta G_{1} H_{1} A$ and $\Delta G_{1} L A$.
VI. Next, show that $\Delta M G_{2} G_{1} \cong \Delta L G_{1} A$. Which congruence criterion are you using? Be sure it depends only on Postulates I - IV and Propositions 1 - 28.

Solution: Since $\angle K M G_{1}$ is a right angle, so is $\angle G_{1} M G_{2}$. This is the same as $\angle G_{1} L A$ by step III above. Moreover, $\angle G_{2} G_{1} M=\angle A G_{1} L$ since those are two vertical angles at the intersection of two lines as in Proposition I. 15 (A, G_{1}, G_{2} lie along one line, and L, G_{1}, M lie along another by step V). Finally $A G_{1}=G_{1} G_{2}$ by construction. Hence $\Delta M G_{2} G_{1} \cong \Delta L G_{1} A$ by ASA (Proposition I. 26 - note that that proposition comes before I.29, so it depends only on Postulates I - IV(!))
VII. Now deduce that $H_{1} K=A H_{1}$ which implies that $K=H_{2}$ from the construction of the points H_{i}.

Solution: Using the triangle congruences from Steps IV, VI, III (in that order) we have

$$
H_{1} K=M G_{1}=L G_{1}=A H_{1} .
$$

Since point H_{2} was constructed to make $H_{1} H_{2}=A H_{1}$, and K, H_{2} both lie along the line $A H_{n}$, we get $K=H_{2}$.
VIII. What technique of proof would be most efficient to continue and show H_{i} is the foot of the perpendicular from G_{i} to $A H_{n}$ for all i ? Can you see how that would go, without writing out all of the details?

Solution: This would be a great candidate for a proof by mathematical induction. What we did above is essentially the base case for the induction. The induction step would be to prove that H_{k} is the foot of the perpendicular to $A H_{n}$ through G_{k}, under the assumption that H_{k-1} is the foot of the perpendicular to $A H_{n}$ through G_{k-1}. The proof would be similar, but it would require considering more triangles.

