MATH 392 - Geometry Through History
 Class Monday, February 8

Background

Recall that on Friday we had started into a rather complicated proof of a result showing that the usual fact about the sum of the angles in a triangle cannot be assumed if we want to try to prove Postulate V from the other postulates. In fact, Postulates I-IV plus that statement is equivalent to Postulates I-V as Euclid stated them. This proof is attributed to the medieval Islamic mathematician Nasir al-Din al-Tusi (although this has sometimes been questioned).

Theorem 1 Assume that Euclid's Postulates I-IV (and all the additional facts such as Pasch's Axiom and the Axiom of Continuity that Euclid did not state explicitly, but that are needed for complete proofs of Propositions 1 - 28) hold. Assume in addition that the angle sum in every triangle is two right angles $\left(180^{\circ}\right)$. Then the statement of Postulate V also holds (as a theorem).

What we will do today is work out the remainder of this proof in our discussion groups.

Questions

We said to start that, given a transversal line falling on two lines making angles on one side summing to less than 180°, (if necessary) we could replace that transversal with a different transversal for which one of the angles was a right angle and for which the angle sum on that one side did not change. (Note that showing the two lines meet using this other transversal is sufficient for what we are trying to show!)
I. Prove that we can always construct this other transversal. (Hint: Drop a perpendicular. You will need to use the assumption that the angle sum in all triangles is 180°.)

Now, assuming the transversal line $A C$ makes a right angle with one line $C D$ and an acute angle with the other line $A B$, we began the argument as follows: Let G_{1} be an arbitrary point on the line $A B$ on the side of the transversal with the angle sum less than 180°. Drop a perpendicular to the transversal
$A C$ from G_{1} and call the foot H_{1}. If $A H_{1}>A C$, then the line $C D$ enters the triangle $\triangle A H_{1} G_{1}$ along the side $A H_{1}$. The line $C D$ is parallel to $H_{1} G_{1}$ since both make right angles with $A H_{1}$ (which is $A C$, extended). Hence Pasch's Axiom implies $C D$ must exit the triangle $\Delta A H_{1} G_{1}$ through the other side and we are done in this case.
II. Why can't we just stop there? Why do we need to do the next part of the argument?

If $A H_{1} \leq A C$, then we argued as follows. (By the Axiom of Continuity, also called the Archimedean Axiom - see McCleary, p. 17), using Euclid's Proposition I.3, we can lay off enough equal segments

$$
A H_{1}=H_{1} H_{2}=\cdots=H_{n-1} H_{n}
$$

to make H_{n} lie "strictly past" C along the line $A C$ (extended using Postulate II). We can also lay off equal segments

$$
A G_{1}=G_{1} G_{2}=\cdots=G_{n-1} G_{n}
$$

(the same number n) along the line $A B$ (extending it as needed using Postulate II). The theorem will be proved if we can show that for all $i \geq 2$, the point H_{i} is the foot of the perpendicular dropped from G_{i} to the line $A C$, extended to $A H_{n}$. (Reason: We will have $C D$ entering one side of the triangle $\Delta A H_{n} G_{n}$ and we can argue as before, using Pasch's Axiom, that the line $C D$, extended using Postulate II, must exit that triangle along the side $A G_{n}$, which is the extension of the line $A B$.)

So we need to show that $G_{i} H_{i}$ is perpendicular to $A H_{n}$ for all $i=2, \ldots, n$. To start, suppose K is the foot of the perpendicular from G_{2} to $A H_{n}$. We must show $K=H_{2}$.
III. Construct $A L$ perpendicular to $A H_{n}$ with $A L=H_{1} G_{1}$. Show that $\angle G_{1} A L=\angle A G_{1} H_{1}$ (using the assumption about the angle sum in triangles). Conclude that $\Delta G_{1} H_{1} A \cong \Delta G_{1} L A$, hence $\angle G_{1} L A$ is a right angle.

Now construct a point M on the line segment $K G_{2}$ so that $K M=H_{1} G_{1}$.
IV. Show that $\angle H_{1} G_{1} K=\angle M K G_{1}$ (again use the assumption about angle sums in a triangle). Deduce that $\Delta M G_{1} K \cong H_{1} K G_{1}$ and $\angle K M G_{1}$ is a right angle.
V. Explain why M, G_{1}, and L must be collinear. (Note: that was not assumed, but it follows from what we have done to this point.)
VI. Next, show that $\Delta M G_{2} G_{1} \cong \Delta L G_{1} A$. Which congruence criterion are you using? Be sure it depends only on Postulates I - IV and Propositions 1 - 28.
VII. Now deduce that $H_{1} K=A H_{1}$ which implies that $K=H_{2}$ from the construction of the points H_{i}.
VIII. What technique of proof would be most efficient to continue and show H_{i} is the foot of the perpendicular from G_{i} to $A H_{n}$ for all i ? Can you see how that would go, without writing out all of the details?

