
MATH 392 – Geometry Through History
Midterm Exam Solutions

March 22, 2016

I. Short Answer. Answer any four (4) of the following briefly (two or three sentences will suffice for
each). Only the best 4 will be used to compute your total score.

(A) (5) Approximately when and where was Euclid active? How much do we know about his life?

Solution: Euclid lived around 300 BCE, in Alexandria in Egypt for a part of his life, at least.
Almost nothing else about his life is known besides a tradition that he was connected in some
way with Plato’s school of philosophy and a few anecdotes about his teaching. (Most of this
is deduced from a statement of the commentator Proclus from about 750 years later.)

(B) (5) State the 5 Postulates for geometry Euclid included at the start of Book I of the Elements.
What was the function of these statements in Euclid’s development of geometry?

Solution: Postulate I: A straight line segment can be drawn between any two points. Postulate
II: A straight line segment can be extended indefinitely in both directions. Postulate III: A
circle can be constructed given any point as the center and given any line segment as radius.
Postlate IV: All right angles are equal. Postulate V: If a line falling on two other lines makes
the angles on one side less than two right angles, then the two lines if extended will meet on
the side with the angles summing to less than two right angles. These were unproved starting
assumptions, from which Euclid wanted to deduce all known facts about geometry. (One
could also say that it was pretty clear that Euclid thought of these as intuitively obvious facts
about the geometry of physical space.)

(C) (5) What was Proclus’s opinion about Euclid’s Postulate V? How was this train of thought
continued in later work?

Solution: Proclus thought that Postulate V was too complicated and unobvious to be a
postulate. He wanted to prove it as a theorem from the other Postulates and results derived
from them. This line of attack was taken up by many other mathematicians up until the late
18th century CE.

(D) (5) Approximately when and where was Girolamo Saccheri, S.J. active? What were his main
contributions?

Solution: Saccheri lived from 1667 to 1733 in Italy. He attempted to prove Postulate V arguing
by contradiction using the properties of figures that we now call Saccheri quadrilaterals. He
proved many theorems about hyperbolic geometry in the process in his book Euclid Freed of
Every Flaw, but he eventually declared that he had found a contradiction to the nature of a
straight line and “punted.”

(E) (5) Why is Gauss now always included with Bolyai and Lobachevsky in discussions of the
developers of hyperbolic geometry when he did not publish any work on that subject?

Solution: He was one of the first mathematicians to realize that no contradiction would result
from a geometry where Euclid’s Postulate V did not hold. He developed many of the theorems
of hyperbolic geometry independently and before Bolyai and Lobachevski. But he decided
not to publish his work because he did not think it would be understood and he wanted to
avoid controversy and preserve his reputation(!)
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Figure 1: Figure for Euclid I.29

(F) (5) What does Pasch’s Axiom say and why do we include that statement in a complete set
of axioms for Euclidean geometry?

Solution: Pasch’s Axiom says that a line that enters a triangle through a point on one or two
of the sides must also exit the triangle at a point one of the sides not already crossed. It is
necessary to include this as an axiom to provide complete proofs of several propositions.

II. (20) State and prove Proposition 29 in Book I of the Elements. What is especially notable about
this proposition? (Note: If you need to, you may “buy” the statement to be proved from me for 5
of the possible points on this problem.)

Solution: Refer to the figure above. The statement is: If lines
←→
AB and

←→
CD are parallel and line←→

GH is a transversal, then (a) alternate interior angles are equal, (b) corresponding angles are equal,
and (c) the interior angles on one side of the transversal add to two right angles.

Proof: We prove (c) first and deduce the other two statements from that one. Suppose ∠EFD+
∠FEB < two right angles. Then Postulate V implies that the lines

←→
AB and

←→
CD extended must

meed on that side of the transversal
←→
GH. But this cannot be true since we assumed

←→
AB and

←→
CD

are parallel. Similarly, if ∠EFD + ∠FEB > two right angles, then ∠CFE + ∠AEF must be less
than two right angles and we do the same argument on that side. It follows that ∠EFD+∠FEB =
two right angles. Now for (b), corresponding angles are ones like the pair ∠GEB and ∠EFD. By
a previous proposition (I.13 to be exact), ∠GEB + ∠FEB = two right angles since G, E, F are
collinear. But then from (c) we also have ∠EFD + ∠FEB = two right angles. Hence ∠GEB =
∠EFD by Common Notion 3 (“if equals are subtracted from equals, the remainders are equal”).
Finally for (a), opposite interior angles are angles like the pair ∠AEF and ∠EFD. We have
∠GEB = ∠AEF by I.15 (equal vertical angles). Then from (b) and Common Notion 1, we have
the desired statement ∠AEF = ∠EFD.
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This was the first use made of Postulate V in Book I of the Elements.

III. Definitions and related facts.

(A) (10) What is the angle of parallelism for a segment AP in hyperbolic geometry? What does
the Bolyai-Lobachevsky theorem tell us about the angle of parallelism?

Solution: Let AP ⊥ PQ. The ray line
−−→
AB from A is said to be parallel to

−−→
PQ in the direction

of Q, B if for any point S in the quadrilateral PQBA, the ray
−→
AS intersects

−−→
PQ, but

−−→
AB does

not meet
−−→
PQ. The angle of parallelism Π(AP ) is the angle ∠PAQ. The Bolyai-Lobachevsky

theorem says that this angle, which depends only on the length x = AP can be computed by

tan(Π(x)/2) = e−x/k

for some constant k.

(B) (10) What is a horocycle in hyperbolic geometry? What is the closest Euclidean analog to
this curve?

Solution: Consider a pencil of parallel lines. If P is a given point, then the horocycle through
P is the locus of points Q such that Q corresponds to P with respect to the pencil. (In
other words, the line of the pencil passing through the midpoint of the line segment PQ is
perpendicular to PQ. The closest Euclidean analog is probably the circle, but the center of
the circle would be a point “at infinity.”

IV. Refer to the figure at the top of the next page. A median of a triangle is the line segment
joining a vertex to the midpoint of the opposite side. In the figure, AA′, BB′, and the dotted line
CC ′ are medians. In this problem, from the parts below you will find a proof of the theorem that

The three medians of a triangle meet in a single point (called the centroid of the triangle).

Let O be the point where two medians meet as in the figure1 The idea of this proof is to show that

(*) O is a point such that AO = 2 ·OA′ and BO = 2 ·OB′.

In other words, (any) two medians cut each other at a point O in two line segments in the ratio
1 : 2, with the shorter distance being the distance from O to the midpoint of the opposite side.

(A) (5) Explain why establishing (*) is enough to show that the three medians all intersect at O.
(Don’t think too hard about this – it’s very easy!)

Solution: If (*) is true then the third median CC ′ must also pass through the point O because
there is only one point on each median that cuts the median into two line segments in the
ratio 1 : 2.

(B) (5) Show that area(∆ABA′) = area(∆ACA′), area(∆OBA′) = area(∆OCA′), and similarly
area(∆BAB′) = area(∆BCB′) and area(∆OAB′) = area(∆OCB′).

Solution: These all follow from the statement of I.38 (triangles on equal bases and in the
same parallels have equal area). A more modern way to say this is that each pair of triangles
has equal bases and equal altitudes, so the area formula 1

2bh shows the areas are the same.

1Comment: Such a point O must exist by Pasch’s Axiom, applied to the triangle ∆AA′B and the line
←−→
BB′.
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Figure 2: ∆ABC with medians AA′ and BB′ in solid black

(C) (5) Deduce that

area(∆OBA′) = area(∆OCA′) = area(∆OCB′) = area(∆OAB′).

Solution: We already know that the first two of these are equal and the last two of them are
equal by (B). So we need to show that one of the first pair is equal to one of the second pair.
Note that since area(∆ABA′) = area(∆ACA′), each of these triangles has half the area of
∆ABC. Since area(∆BAB′) = area(∆BCB′), the same is true for those two triangles. It
follows that

area(∆BAB′) = area(∆BOA)+area(∆OAB′) = area(∆ABA′) = area(∆BOA)+area(∆OBA′).

Hence area(∆OAB′) = area(∆OBA′). Then all four of those triangles are equal in area.

(D) (5) Finally, show that AO = 2 · OA′ and BO = 2 · OB′, which is the desired statement (*)
above.

Solution: Look at parts (B) and (C). The triangle ∆ACA′ is split into three equal smaller
triangles. The triangle ∆ABA′ has the same area and is split into ∆OBA′ (which is equal in
area to each of the three smaller triangles) and ∆OAB. This says

area(∆OAB) = 2 · area(OBA′).

But now those two triangles have bases along the same line and a common vertex at B, so
the bases satisfy AO = 2 ·OA′. The statement BO = 2 ·OB′ follows similarly by considering
the triangles ∆BAB′ and ∆BCB′.

V. Consider the figure at the top of the next page.
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Figure 3: An “asymptotic triangle” in the hyperbolic plane

(A) (15) Show that in the hyperbolic plane it is possible to construct three pairwise parallel
hyperbolic lines as in the figure – that is show how to construct three lines `1, `2, and `3

and points A, A′ on `1, B, B′ on `2 and C, C ′ on `3 such that
−−→
AA′ is parallel to

−−→
BB′ in the

direction of A′ and B′, and (at the same time)
−−→
B′B is parallel to

−−→
CC ′ in the direction of B

and C ′, and (at the same time)
−−→
A′A is parallel to

−−→
C ′C in the direction of A and C.

Solution: Recall from Problem Set 3 that given any angle ∠AOB, less than two right angles,
there is a line

←→
PQ that such that

−−→
QP is parallel to

−→
OA in the direction of P and A and also−−→

PQ is parallel to
−−→
OB in the direction of Q and B. The construction was as follows. Let

−−→
OD

be the angle bisector of ∠AOB and let D be a point along that bisector such that the angle
of parallelism Π(OD) = ∠AOD = ∠BOD. Then the line perpendicular to

−−→
OD through D is

the line. To get the lines as in the figure, take three rays meeting at a point O at pairwise
angles of 120◦ (for instance – any three angles summing to 360◦ with none ≥ 180◦ would also
work). Apply the result from the problem set to each pair of rays to get three lines. The
only remaining thing to show is that the lines are pairwise parallel. But that follows since
for instance once we know

−−→
AA′ and

−−→
BB′ are both parallel to the ray shown as dotted black

in the figure, then they must also be parallel to each other.

(B) (5) Generalize your argument to show that there are similar “asymptotic n-gons” of parallel
lines for any n ≥ 3.

Solution: Apply the same result from the Problem Set 3 to n rays meeting at angles of 360◦

n .
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