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As you have now seen, the abstract surface H consisting of the upper
half-plane with the Riemannian metric

ds2 =
dx2 + dy2

y2

is what is called a “model” of the geometry of the hyperbolic plane we studied
earlier in the semester(!) In other words, it is a surface constructed using the
tools from differential geometry whose geodesics have the same properties
as the lines in hyperbolic plane. The usual name for this surface is the
Poincaré upper half-plane model. The existence of examples like this one in
effect provides additional evidence for the validity of hyperbolic geometry.

As we said earlier in the semester, non-Euclidean geometries first ap-
peared in published form in work of Lobachevsky (1830) and Bolyai (1832).
Their work was to a great extent anticipated by unpublished work of Gauss
done in the early 1800’s. As their papers became better known and accepted
by other mathematicians, there were still (at least in some quarters) what I
will call “lingering doubts” about whether hyperbolic geometry was really a
consistent mathematical system. Bolyai and Lobachevsky certainly worked
under the understanding that their non-Euclidean geometries were just as
consistent as the Euclidean geometry with Postulate V. However, they did
not provide any proofs of such statements; they merely developed all the
properties of the hyperbolic plane and exhibited all the ways hyperbolic ge-
ometry differed from Euclidean geometry.

The first mathematician who really addressed the question of proving
consistency was the Italian geometer Eugenio Beltrami (1835-1900). What
he did was to use the differential geometry of surfaces developed by Gauss
and others to produce an explicit surface whose intrinsic geometry would be
the same as (a portion of) the hyperbolic plane. This was even a surface of
revolution, obtained by rotating the curve called the unit speed curve called
the tractrix

α(s) =

(
e−s, ln(es +

√
e2s − 1)−

√
e2s − 1

es

)
about the x-axis. It is a nice (but somewhat involved) exercise to verify
that the resulting surface, often called the pseudosphere (see Figure 1) has
constant Gaussian curvature K = −1 (the same as our abstract surface H).
Beltrami then studied the geodesics on that surface and showed that geodesic
triangles have the form we saw in hyperbolic geometry (the angle sums are
less than 180◦, etc.)

Now the key point here is that this surface with its non-Euclidean in-
trinsic geometry has been constructed inside of the familiar Euclidean R3.
If there were any contradiction involved in its properties, they would also
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Figure 1: Plaster model of the pseudosphere

be contradictions regarding properties of an ordinary Euclidean surface of
revolution. With this insight, what Beltrami showed is often paraphrased by
saying that hyperbolic geometry is “just as consistent as Euclidean geome-
try.” Technically, this is known as a relative consistency proof. Stated more
formally, what he proved is that Euclidean geometry is consistent if and only
if hyperbolic geometry is consistent.

However, there is a deficiency of the pseudosphere model of hyperbolic
geometry in that the pseudosphere does not represent all of the hyperbolic
plane. Hence it’s somewhat awkward to say how Postulate II is supposed to
hold since geodesics cannot be extended indefinitely as they tend toward the
points on the boundary circle at the bottom of the pseudosphere. Beltrami
also addressed this issue and developed another model of hyperbolic geome-
try. This model was also studied by the German mathematician Felix Klein
(1849-1925) and is shown in Figure 2. It is more commonly known as the
Klein model for this reason, but Beltrami really deserves some of the credit
too. In this model,

• The points are the points (strictly) inside the unit disk in R2, and

• the geodesics are chords of the boundary circle.

• The boundary circle is not included, though, so the geodesics are open
line segments.

• Distances and angles are defined in terms of a “non-standard” Rieman-
nian metric.

As on our example surface H, this means that the lengths of curves in this
model differ from the lengths of the corresponding Euclidean curves. Unlike
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Figure 2: The Beltrami-Klein model of the hyperbolic plane

the case in our example surface H, angle measurements are also different.
This means, for instance, that “right angles” in this model do not look like
Euclidean right angles. The fact that they do in our model H is a special
property known as conformality.

The model we studied in our discussion was developed by a different math-
ematician in what started out as a very different context. One of the great
anecdotes about mathematical inspiration comes from the French mathe-
matician Henri Poincaré (1854 - 1912). At one point, Poincaré was deeply
involved in trying to solve a problem in complex analysis regarding what he
called “Fuchsian functions”–functions defined on the unit disc in the complex
plane:

∆ = {z ∈ C : |z| < 1}

that would satisfy particular types of transformation rules.
Poincaré says:

Just at this time I left Caen, where I was then living, to go on a geological
excursion under the auspices of the school of mines. The changes of travel
made me forget my mathematical work. Having reached Coutances, we en-
tered an omnibus to go some place or other. At the moment when I put my
foot on the step the idea came to me, without anything in my former thoughts
seeming to have paved the way for it, that the transformations I had used to
define the Fuchsian functions were identical with those of non- Euclidean ge-
ometry. I did not verify the idea; I should not have had time, as, upon taking
my seat in the omnibus, I went on with a conversation already commenced,
but I felt a perfect certainty. On my return to Caen, for conscience’ sake I
verified the result at my leisure.
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Figure 3: The Poincaré model of the hyperbolic plane

In the Poincaré disc model shown in Figure 31 the points are again the
points in the interior of the unit circle. But now geodesics are arcs of circles
meeting the boundary circle at right angles. In the figure above, we see
infinitely many such geodesics through a point not lying on the solid blue
geodesic. The parallels are the two circles meeting the solid blue curve at
points on the boundary circle. (Those points are not points in the hyperbolic
plane though; we would think of them as “points at infinity” and the parallels
are merely asymptotic in the hyperbolic plane itself.)

As a domain for defining functions of a complex variable, the upper half
plane we studied in the final small group discussion days is actually equivalent
to this disk, via a mapping that can be described in complex coordinates by

φ : z 7→ z − i
z + i

(This maps i ↔ (0, 1) to 0, the x-axis to the unit circle and the upper half-
plane to the interior of the unit circle.) As a result he saw how to create
analytical models of hyperbolic geometry using the interior of the unit disc
and the upper half-plane in the complex plane, and do all of the hyperbolic
constructions we did in terms of complex analysis(!)

1I believe Beltrami (as well as Riemann) also defined something equivalent to this
version, and well before Poincaré did. Why isn’t it named after one of them? The best
answer is probably that mathematicians are generally very bad historians as you might
guess already from the Beltrami-Klein case discussed before(!) Things tend to get named
after more famous mathematicians or after the place most people learn about them, not
after the first people to develop them. Sometimes also connections are overlooked or not
appreciated if constructions are written down in different ways.
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So we have reached the end of the part of our journey where I serve as
guide. I hope you have found it an interesting trip! Starting from the begin-
nings of geometry as a deductive science in the Elements of Euclid, contin-
uing in the attempts to free Euclid of perceived flaws (especially regarding
the status of Postulate V), through Bolyai and Lobachevsky and their flights
of imagination, then the development of geometry through the introduction
of coordinates and tools from calculus, we have seen how the history of the
subject has been shaped by what went before. I hope you have a bit more
of an appreciation of how the mathematics of the present connects with the
questions that began the study of the subject, and how mathematics is really
a very unified subject, where the neat divisions into algebra, analysis, and
geometry are actually pretty arbitrary. When it comes to understanding the
features of the mathematical world, any tool is potentially useful and it’s
really “all of a piece.”
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