MATH 392 - Geometry Through History
Geometry of the Hyperbolic Plane, I
February 19, 22
If, following Gauss, Lobachevsky, and Bolyai, we seek to understand the geometry obtained by assuming Postulates I - IV, (and the axioms of continuity, Pasch's Axiom, etc.) and Saccheri's HAA, then the resulting geometric structure is called the hyperbolic plane, and we are doing hyperbolic geometry.

Summary to this point:

- Given any line $\overleftrightarrow{A B}$, and a point P not on $\overleftrightarrow{A B}$ with $P A \perp \overleftrightarrow{A B}$, there are infinitely many lines through P not meeting $\overleftrightarrow{A B}$
- Given B, among the previous lines there is a special one $\overleftrightarrow{P Q}$ called the parallel in the direction of B which is distinguished by the fact that any line $\overleftrightarrow{P S}$ with S in $A B Q P$ with $\angle A P S<\angle A P Q$ meets $\overleftrightarrow{A B}$ on the ray containing B. On the other hand, if S lies on the same side of $A P$ as B and $\angle A P Q \leq \angle A P S \leq 90^{\circ}$, then $\overleftrightarrow{P S}$ does not meet $\overleftrightarrow{A B}$. Intuitively, the parallel separates lines through P that do meet $\overleftrightarrow{A B}$ on the same side of A as B from the lines that do not meet $\overleftrightarrow{A B}$.
- The parallelism relation on lines is symmetric and transitive
- When $\overleftrightarrow{P Q}$ is the parallel in the direction of $B, \angle A P Q=\Pi(A P)$ is called the angle of parallelism
- $\Pi(A P)$ depends only on the length of $A P$, not on the locations of the points A and P. (In particular, it is the same on both sides of $A P$.)
- $\Pi(A P)$ is a monotone decreasing function of the length $A P$
- An immediate consequence of the last is the counterintuitive-sounding fact if you are used to thinking in Euclidean terms (relying on Postulate V for intuition): parallel lines have no common perpendiculars - if a segment $A P$ is perpendicular to one of a pair of parallel lines, then it makes the angle of parallelism $\Pi(A P)$ with the other one, and that angle is always acute(!)

Pencils of lines:

In the geometry of the hyperbolic plane, the following collections of lines called pencils will be important. (Note: a "pencil" of geometric objects is a slightly old-fashioned general term for a one-parameter family of those objects.)

1. Given a point P, the collection of all lines containing P is called \mathbf{P}_{P}

Figure 1: Figure for Theorem 1, Case I.
2. Given a line $\overleftrightarrow{A B}$, the collection of all lines meeting $\overleftrightarrow{A B}$ at a right angle is called $\mathbf{P} \underset{A B}{\perp}$.
3. Given a line ℓ, the collection of all lines parallel to ℓ is called \mathbf{P}_{ℓ}.

Theorem 1 (Theorem 4.4 in McCleary) Let X, Y, Z be three distinct points, determining the triangle $\triangle X Y Z$. Let ℓ, m, n be the perpendicular bisectors of the sides $X Y, X Z, Y Z$ respectively. Then those three lines are always in a pencil of one of the three types above.

- Case I: Suppose two of the lines, say ℓ, m actually intersect at some point Q.
- Then $X Q=Y Q=Z Q$, so Q is the center of a circumscribed circle about the triangle $\triangle X Y Z$. (Why?)
- Then Q must also lie on the remaining line n. (Why?)
- Hence in this case, all three lines are in the pencil \mathbf{P}_{Q}.
- Note: In Euclidean geometry, every triangle falls into this case. Do you see why?

Figure 2: Figure for Theorem 1, Case II.

- Case II: Suppose two of the lines, say ℓ, m have a common perpendicular, the line $\overleftrightarrow{A B}$, where ℓ meets that line at A and m meets that line at B (both at right angles, of course!) (Note that this implies they cannot meet, so we're not in Case I.)
- Let L, M, N be the midpoints of the sides $X Y, X Z, Y Z$ respectively (see figure)
- Drop perpendiculars $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ to $\overleftrightarrow{A B}$
- Join $X B$ and $Z B$. Then $\triangle B M Z \cong \triangle B M X$ (Why?) and $\triangle X B X^{\prime} \cong$ $\triangle Z B Z^{\prime}$ (Why?)
- Hence $X X^{\prime}=Z Z^{\prime}$.
- Similarly, joining $X A$ and $Y A$ we get $X X^{\prime}=Y Y^{\prime}$. Hence $Y Y^{\prime} Z Z^{\prime}$ is a Saccheri quadrilateral. The bisector n of the top side $Y Z$ meets the bottom side $Y^{\prime} Z^{\prime}$ at a right angle at its midpoint by a fact we proved before.
- Hence in this case, all three lines are in the pencil $\mathbf{P}_{\stackrel{\leftrightarrow}{A B}}^{\perp}$.

Figure 3: Figure for Theorem 1, Case III.

- Case III: If we are not in Cases I or II, then no pair of the lines $\ell=$ $L L^{\prime}, m=M M^{\prime}, n=N N^{\prime}$ meet, and no two of them have a common perpendicular. This implies that each pair is parallel. But we have to show that ℓ, m, n are all parallel in the same direction, and this comes down to showing that $\angle L^{\prime} T Z$ and $\angle X S N^{\prime}$ are acute so they are the corresponding angles of parallelism.
- For $\angle L^{\prime} T Z$, acuteness follows by this argument: $\triangle X T L$ is a right triangle, so the exterior angle $\angle Z T L$ is obtuse ($>90^{\circ}$). Then $\angle L^{\prime} T Z$ is $180^{\circ}-$ (an obtuse angle), so it must be acute.
- The argument for $\angle X S N^{\prime}$ is similar.

Additional Definitions

- Given a pencil \mathbf{P} of lines (of any one of the three types), we say two points X and Y correspond with respect to \mathbf{P} if the line of the pencil that passes through the midpoint of the line segment $\overline{X Y}$ meets that segment at a right angle.
- When $\mathbf{P}=\mathbf{P}_{Q}$ is the pencil of lines through Q, then set of all points corresponding to a given point X is what familiar curve? It's the
- In the case $\mathbf{P}=\mathbf{P}_{\ell}$ is the pencil of lines parallel to some line ℓ, the set of all points corresponding to a given point X is called a horocycle through X. What curve in Euclidean geometry has the defining property of a horocycle? It's the \qquad . In hyperbolic geometry, horocycles are not lines, but they can be thought of as "circles with center at infinity.")
- In the case $\mathbf{P}=\mathbf{P}_{m}^{\perp}$ is the pencil of lines perpendicular to some line m, the set of all points corresponding to a given point X is the curve of points equidistant from the line. (This follows from a property of Saccheri quadrilaterals we proved previously. The curve of points equidistant from a line is not another line in the hyperbolic case(!)

