MATH 392 - Geometry Through History
Finishing Bolyai-Lobachevsky Theorem
February 29

To finish up our discussion of the Bolyai-Lobachevsky theorem and hyperbolic geometry, we need to prove the following lemma that we deferred last time. (Note: some names of points changed to agree with a diagram I'm copying!)

Reminder about notation: $\overline{A B}$ is a segment of a (hyperbolic) line; $A B$ is the length of the line segment; $\widehat{A B}$ is the horocycle arc, or its arclength.

Lemma 6 Let $\overrightarrow{O X} \perp \overrightarrow{O Y}$, let A be along the ray $\overrightarrow{O Y}$ with $O A=$ u, and $\overrightarrow{A A^{\prime}}$ be parallel to $\overrightarrow{O X}$ in the direction of X and A^{\prime}. Let $\widehat{O B}$ be the horocycle arc through O (for the pencil of parallel lines containing $\overleftrightarrow{O X}$ and $\overleftrightarrow{A A^{\prime}}$) intersecting $\overrightarrow{A A^{\prime}}$ at B. Let $v=A B$ and $s=\widehat{O B}$. Then the following relations hold:

$$
e^{v / k}=\cosh (u / k)
$$

and

$$
s=\sigma \tanh (u / k)
$$

where σ is a constant that will be determined in the course of the proof.

Figure 1: Figure for proof of Lemma 6

- Let $\overleftrightarrow{T T^{\prime}}$ be parallel with $\overrightarrow{O X}$ in the direction of X and T and with $\overrightarrow{O Y}$ in the direction of Y and T^{\prime}. (You showed how to get such a line in Problem Set 3.)
- Construct N as in diagram so $A N=u$ and let $\overrightarrow{N N^{\prime}}$ be perpendicular to $\overleftrightarrow{A A^{\prime}}$ and parallel to $\overrightarrow{O Y}$ in the direction of Y.
- Construct U as in the diagram so $O U=u$, let $\overrightarrow{U U^{\prime}}$ be parallel to $\overrightarrow{O X}$ in the direction of X, and extend the horocycle through O, B so that it meets $\overrightarrow{U U^{\prime}}$ at point V.
- Construct M so $U M=u$ again, and let $\overrightarrow{M M^{\prime}}$ be perpendicular to $\overleftrightarrow{U U^{\prime}}$ parallel to $\overrightarrow{O Y}$ in the direction of Y.
- Construct the perpendiculars $\overline{N D^{\prime}}, \overline{O C^{\prime}}, \overline{M E^{\prime}}$ to $\overleftrightarrow{T T^{\prime}}$ as in the diagram.

Figure 2: Figure for proof of Lemma 6

- By construction, it follows that $N D^{\prime}=O C^{\prime}=M E^{\prime}$ (since all equal the x such that $\Pi(x)=45^{\circ}$)
- Consider the concentric horocycle $\operatorname{arcs} \widehat{N D}, \widehat{O C}, \widehat{M E}$. By the previous bullet, these are also all equal in length: $\widehat{N D}=\widehat{O C}=\widehat{M E}=\sigma$. This defines the constant in the second formula we are trying to prove.
- By our previous result about ratios of horocycle arcs, since $B N=u+v$, and $\widehat{B C}=\sigma-s$, we have

$$
\begin{equation*}
\frac{\sigma-s}{\sigma}=e^{-(u+v) / k} \tag{1}
\end{equation*}
$$

- Similarly, $V M=u-v$, and $\widehat{C V}=\sigma+s$, so

$$
\begin{equation*}
\frac{\sigma}{\sigma+s}=e^{-(u-v) / k} \Leftrightarrow \frac{\sigma+s}{\sigma}=e^{(u-v) / k} \tag{2}
\end{equation*}
$$

Adding (1) and (2) gives

$$
2=\frac{\sigma-s}{\sigma}+\frac{\sigma+s}{\sigma}=e^{-v / k}\left(e^{u / k}+e^{-u / k}\right),
$$

which shows

$$
e^{v / k}=\cosh (u / k)
$$

This is the first part of Lemma 6.
The second part also comes from (1) and (2), which we copy for your convenience:

$$
\begin{equation*}
\frac{\sigma-s}{\sigma}=e^{-(u+v) / k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sigma}{\sigma+s}=e^{-(u-v) / k} \Leftrightarrow \frac{\sigma+s}{\sigma}=e^{(u-v) / k} \tag{2}
\end{equation*}
$$

If we subtract these instead of adding we get:

$$
\frac{2 s}{\sigma}=e^{(u-v) / k}-e^{-(u+v) / k}=e^{-v / k}\left(e^{u / k}-e^{-u / k}\right)
$$

so by the first part:

$$
s=\sigma e^{-v / k} \sinh (u / k)=\sigma \frac{\sinh (u / k)}{\cosh (u / k)}=\sigma \tanh (u / k)
$$

and the proof is complete.

