MATH 392 - Geometry Through History
 Saccheri Quadrilaterals and Consequences Lecture Notes/Solutions From Class Friday, February 12

Background

Recall that on Wednesday we were considering the proof of
Theorem 1 The following are equivalent:
(1) Euclid's Postulates I-V (and all the additional facts such as Pasch's Axiom and the Axiom of Continuity that Euclid did not state explicitly, but that are needed for complete proofs of the Propositions in Book I of the Elements.)
(2) Euclid's Postulates I - IV (and all the facts as in (1)), plus: The set of points equidistant from a given line is another line.

We proved $(1) \Rightarrow(2)$ and saw the intuition behind $(2) \Rightarrow(1)$, but we had some work left to establish the implication. We had completed:

Lemma 1 Let $C D K H$ be a quadrilateral with $C H \perp C D, D K \perp C D$ and $C H=D K$. Then $\angle C H K=\angle D K H$.

Figures as in this Lemma are called "Saccheri quadrilaterals" because Girolamo Saccheri, S.J. considered their properties extensively in his work on geometry.

Lemma 2 (Saccheri-Legendre Theorem) Assume Euclid's Postulates I-IV (and all the facts as in (1) of the theorem) hold. Then the angle sum in every triangle is $\leq 180^{\circ}$.

To complete the proof of $(2) \Rightarrow(1)$, recall that we needed to show that non-parallel lines "diverge" on one side of their intersection point - the distance between points on one line and the other line grows without bound. This will follow from our next statement:

Lemma 3 Assume Euclid's Postulates I - IV (and all the facts as in (1) of the theorem) hold. Let $\triangle A C M$ be a right triangle, with $\angle A C M=90^{\circ}$. Let B be the midpoint of $A M$ and drop the perpendicular $B D \perp A C$ with D on the segment $A C$. Then $B D \leq \frac{1}{2} C M$ (or equivalently $C M \geq 2 B D)$.
(The statement in parentheses is what guarantees the non-parallel lines $\overleftrightarrow{A M}$ and $\overleftrightarrow{A C}$ diverge as in the discussion above.)

Questions

I. The proof of Lemma 3 is based on this construction: Extend $D B$ to $D H$ with $B H=D B$. Arguing by contradiction, assume $C M<2 B D$. Then we can extend the line segment $C M$ (Postulate II), lay off a segment equal to $2 B D$ along that line, and join $H K$ to form a quadrilateral $D C H K$. (Note that the order of the points C, D has been reversed from the above - I'm listing the vertices moving counterclockwise around the quadrilateral.) Follow this outline to provide a proof of Lemma 3:
(A) Show that $\triangle A D B \cong \triangle M B H$.

Solution: We have $A B=B M$ and $D B=B H$ by construction. Moreover $\angle A B D=\angle M B H$ by equality of vertical angles at intersection of two lines (Proposition I.15). Therefore this congruence is true by Proposition I. 4 (SAS).
(B) Show that $\angle D H K>90^{\circ}$.

Solution: $\angle D H M=\angle A B D=90^{\circ}$ by the congruence in part (A). Then $\angle D H K>90^{\circ}$ by Common Notion 5 ("the whole is greater than the part.")
(C) Explain why $D C H K$ is a Saccheri quadrilateral, and deduce that the sum of the angles in that quadrilateral must be $>360^{\circ}$.

The first part is true by the definition of a Saccheri quadrilateral: $D H \perp D C, K C \perp D C$, and $D H=C K$. Then Lemma 1 implies that the angle sum is equal to two right angles, plus two angles greater than a right angle.
(D) However, show that (C) gives a contradiction to Lemma 2 (the Saccheri-Legendre Theorem). Hint: What does that result say about the angle sum in a quadrilateral?

The contradiction comes from the Saccheri-Legendre theorem. If you join two opposite vertices of a quadrilateral to form two triangles, then the sum of the angles in the two quadrilaterals is $\leq 2 \cdot 180^{\circ}=360^{\circ}$. But (C) says we have a Saccheri quadrilateral where the two summit angles are equal by Lemma 1, and also obtuse. This would give an angle sum $>360^{\circ}$. Therefore it must be true that $C M \geq 2 B D$, which is what we wanted to show. (The contradiction came from assuming $C M<2 B D$.)
II. Let $C D K H$ be a Saccheri quadrilateral and let M be the midpoint of $C D$ and N be the midpoint of $H K$. Show that $M N \perp C D$ and $M N \perp H K$.

Solution: Join $C N$ and $D N$ first to form triangles $\triangle C H N$ and $\triangle D K N$. We have $C H=D K$ by definition of a Saccheri quadrilateral, $\angle C H N=\angle D K N$ by Lemma 1, and $H N=K N$ since N is the midpoint of $H K$. Therefore $\triangle C H N \cong \triangle D K N$ by SAS (Proposition I.4). It follows that $C N=D N$ since those are corresponding parts of the congruent triangles. Now, we also have $\triangle C M N \cong \triangle D M N$ by SSS (Proposition I.8). It follows that $\angle C M N=\angle D M N$, so both of them are right angles. The proof that $\angle H N M=\angle K N M$ are right angles is similar, but it proceeds by starting from the diagonals $H M$ and $K M$, showing $\triangle H M C \cong \triangle K M D$, then deducing $\triangle H M N \cong \triangle K M N$.

Following Lemma 1 Saccheri basically considered three alternatives in his work. In a Saccheri quadrilateral $C D K H$ as above, recall $\angle C H K=\angle D K H$.

HAA: "hypothesis of the acute angle": the equal angles $\angle C H K=\angle D K H$ are acute.

HRA: "hypothesis of the right angle": the equal angles $\angle C H K=\angle D K H$ are right angles. (This is the case in Euclidean geometry, where a Saccheri quadrilateral is just an ordinary rectangle.)

HOA: "hypothesis of the obtuse angle": the equal angles $\angle C H K=\angle D K H$ are obtuse.
III. Show that HOA contradicts the Saccheri-Legendre Theorem (Lemma 2).

Solution: As in I above, HOA would imply that the angle sum in the Saccheri quadrilateral is $>360^{\circ}$. But that is not possible because the Saccheri-Legendre theorem implies that the sum is $\leq 360^{\circ}$ (by splitting the quadrilateral into two triangles with a diagonal).
IV. Show that HAA implies $H K>C D$ in the Saccheri quadrilateral. Hint: Argue by contradiction, starting from the assumption $H K \leq C D$. Use the result of II above. If all this is true, you can extend the line segment $H K$ to a point T beyond K with the distance from the midpoint N satisfying $N T=\frac{1}{2} C D$. What is now true about the quadrilateral $M D T N$?

Solution: Following the Hint: Assume HAA, but $H K \leq C D$. Then $\frac{1}{2} H K \leq \frac{1}{2} C D$ as well and we can extend $H K$ to a point T beyond K with $N T=\frac{1}{2} C D$. Join $T D$ and consider the quadrilateral $M D T N$. By II, the angles $\angle T N M$ and $\angle D M N$ are both right angles. Moreover $N T=M D$ by construction. So $M D T N$ is a Saccheri quadrilateral. But the summit angles are now $\angle M D T>90^{\circ}$ (Common Notion 5 again) and $\angle N T D$ which must be equal. This is a contradiction since we were assuming HAA.

Moreover, it follows that the sum of the angles in any triangle is $<180^{\circ}$ under HAA. Saccheri then tried to eliminate HAA to show that Euclidean geometry was the only possibility (showing that Postulate V follows from I - IV). However, even though he eventually found a result that he claimed "was repugnant to the nature of a straight line" and he rejected HAA for that reason, he was actually proving true theorems about hyperbolic geometry. We will begin to consider this next week(!)

