
MATH 392 – Geometry Through History
Bolyai-Lobachevsky Theorem and Hyperbolic Pythagorean Theorem

February 22, 24, 26

Recap

In the geometry of the hyperbolic plane, the following notions are keys
to the general properties:

� Given a line `, the collection of all lines parallel to ` is called P`.

� Given a pencil P of lines (of any one of the three types – but we’ll
be concerned mostly with the parallel pencils), we say two points X
and Y correspond with respect to P if the line of the pencil that passes
through the midpoint of the line segment XY meets that segment at
a right angle (or equivalently, the lines of the pencil through X and
through Y make equal angles with the segment XY ).

� In the case P = P` is the pencil of lines parallel to some line `, the set of
all points corresponding to a given point X is called a horocycle through
X. In Euclidean geometry, horocycles are lines; in hyperbolic geometry,
horocycles are not lines, but they can be thought of as “circles with
center at infinity.”)

� Given a pencil of parallel lines, there is a horocycle passing through
every point in the plane. Two horocycles are concentric of they come
from the same pencil of parallel lines.

Our next goal is to prove a result known as the Bolyai-Lobachevsky theorem:

Theorem 1 (Bolyai-Lobachevsky) Let Π(x) denote the angle of paral-
lelism of a segment of length x. Then

tan(Π(x)/2) = e−x/k

for some constant k.

Along the way, we will take a “detour” into three-dimensional hyperbolic
space and see a result analogous to the Pythagorean theorem that holds for
triangles in the hyperbolic plane.
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Some preliminary results

Proposition 1 (1) Let A,B, X, Y be two pairs of points on the same horo-
cycle. If the line segments AB and XY satisfy AB = XY , then the
horocycle arcs satisfy ÂB = X̂Y .

(2) Let A,A′ be on one line of a parallel pencil, while X,X ′ lie on another
line of the same parallel pencil. If A,X lie on the same horocycle and
similarly for A′, X ′ then AA′ = XX ′.

(3) In the situation of the previous part, if
−−→
AA′ and

−−→
XX ′ are in the direction

of parallelism, then ÂX > Â′X ′ (that is, horocycle arcs intercepted by
the lines of a pencil decrease in the direction of parallelism).

For proofs, see Lemma 4.8 in McCleary.

Proposition 2 The ratio of the lengths of arcs of two concentric horocycles
intercepted by two lines of a parallel pencil is expressible in terms of an expo-
nential function of the distance between the arcs (along any one of the lines
– see Proposition 1, part (2)).

� First suppose A,B,C are on one horocycle and A′, B′, C ′ are on a
concentric horocycle.

� If nÂB = mB̂C for some m,n ∈ Z, then

ÂB

Â′B′
=

m
n
B̂C

m
n
B̂′C ′

=
B̂C

B̂′C ′

� So, the ratio depends only on the distance between the horocycles.

� If the ratio is irrational, approximate by rational numbers and take a
limit.
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Figure 1: Figure for Proposition 2

� Write x = AA′ and y = A′A′′ along the line.

� Then we have

ÂB

Â′B′
= f(x),

Â′B′

Â′′B′′
= f(y),

ÂB

Â′′B′′
= f(x+ y)

and
f(x+ y) = f(x)f(y)

� (Assuming f differentiable), we have, using the previous bullet:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= f(x) lim

h→0

f(h)− 1

h
= f(x) · 1

k

for some k.

� Then standard facts from calculus show

f(x) = ex/k

so
ÂB = Â′B′ex/k

Note, this is increasing in the opposite of the direction of parallelism.
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Next, following Bolyai and Lobachevsky, we will make a detour into three-
dimensional space. Assume Postulates I-IV, and Saccheri’s HAA hold in all
planes.

Definition. Two lines `1, `2 in space are parallel if they lie in the same plane
and are parallel in that plane.

Note that there are also skew pairs of lines, and coplanar pairs of lines that
do not meet, but are not parallel, since the definition of parallel is hyperbolic
one(!)

First there are some results that should look very familiar, since they
are the same as in Euclidean three-dimensional space. You will be asked to
provide proofs on Problem Set 3, due Monday, February 29.

Lemma 1 Let `1, `2 be parallel lines in space and `1 ⊂ T1, `2 ⊂ T2, where
T1, T2 are distinct planes. If T1 and T2 meet, the line m = T1 ∩ T2 is parallel
to both `1 and `2.

Definition. We say a line ` is perpendicular to a plane T if ` meets T at a
point P and every line through P in T meets ` at a right angle.

Lemma 2 The following are equivalent for a line ` intersecting a plane T
at a point P .

(1) ` ⊥ T

(2) There exist lines m1 6= m2 through P in T such that ` meets m1 and
m2 at right angles.

Corollary 1 Given a line ` and a point P , there is a unique plane containing
P and perpendicular to `.

Lemma 3 If ` ⊥ T with `∩ T = P , let m be any line in T and A ∈ m such
that AP ⊥ m. If B is any point on `, then AB ⊥ m.

Corollary 2 Given a plane T and a point P in T , there is a unique line
through P that is perpendicular to T .

Definition. Two planes T, T ′ are perpendicular if there is a line ` ⊂ T
that is perpendicular to T ′ (or equivalently, there is a line `′ ⊂ T ′ that is
perpendicular to T .

Lemma 4 (1) If T and T ′ are perpendicular planes, and ` is a line on T ,
then ` ⊥ T ′ is equivalent to ` ⊥ m for m = T ∩ T ′.

(2) If `1 ⊥ T and `2 ⊥ T , then `1, `2 are coplanar and non-intersecting (but
not necessarily parallel – this is a difference in the hyperbolic case!)
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Lemma 5 (1) Given a line ` and a plane T not containing `, there is a
unique plane T ′ containing ` that is perpendicular to T .

(2) Given any two distinct planes T1, T2, there exist planes T that are per-
pendicular to both.

Definitions.

(a) Let T ′ be the unique plane containing a given line ` and perpendicular
to a plane T (note that the assumption this plane is unique rules out
the case where ` ⊥ T ). Then m = T ∩ T ′ is called the perpendicular
projection of ` onto T .

(b) ` ⊂ T ′ is parallel to T if ` and the perpendicular projection m into T
are parallel lines in T ′

(c) Two planes are parallel if the intersections with some common perpen-
dicular plane are parallel lines.
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Figure 2: Figure for Theorem 2

Next, we have a very important analog of the Playfair Postulate in Euclidean
plane geometry:

Theorem 2 Through a line ` parallel to a plane T , there exists a unique
plane that contains ` and is parallel to T .
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Definition. The set of all points corresponding to a given point P with
respect to the family of all lines parallel to a given line is called a horosphere,
HP .

To visualize this:

� Let ` be any one of the lines in the family

� Let T ⊃ ` be a plane

� Then HP ∩ T is a horocycle in the plane T

� That horocycle contains the point P if P is on `, but not otherwise

In fact, a horosphere can be thought of as a sort of “surface of revolution”
generated by a horocycle in one of the planes containing `.

One of Bolyai and Lobachevsky’s main ideas: We can “do geometry” on
the horosphere if we take horocycles as the analogs of lines. For instance, it’s
not hard to see that any two points P, P ′ on the horosphere determine copla-
nar parallel lines P ∈ `, P ′ ∈ `′, hence a horocycle in the plane containing
`, `′ passing through P, P ′. This and Theorem 2 leads to a most surprising
and important result:

Theorem 3 The geometry of points and horocycles on a horosphere is Eu-
clidean.

(That is, Postulates I-V all hold if we replace “line” by “horocycle!”)
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Hyperbolic trig functions

Let

cosh(t) =
et + e−t

2
, sinh(t) =

et − e−t

2

This gives a family of functions parallel to the usual trig functions according
to the following definitions

tanh(t) =
sinh(t)

cosh(t)
, coth(t) =

cosh(t)

sinh(t)

As you’ll see on Problem Set 3, these have many properties similar to the
usual trig functions, except they correspond to properties of hyperbolas rather
than circles. Most important hyperbolic identity:

cosh2(t)− sinh2(t) = 1

for all t (see where the hyperbolas are entering?)
Two basic results:

Lemma 6 Let
−→
PQ and

−−→
XX ′ be parallel in the direction of Q and X ′ with

XP ⊥ PQ with PX = u. If we also draw in the horocycle arc through P
(for the pencil of parallels including the two given lines), and call s = P̂B
the distance along that arc from P to where it intersects XX ′ at B. Finally
let v = BX. Then the following relations hold:

ev/k = cosh(u/k),

and
s = σ tanh(u/k)

where σ is a constant that will be determined in the course of the proof.

We will assume these for now and come back to their proof later. We will
next use them to deduce the Bolyai-Lobachevsky theorem, Theorem 1.
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Figure 3: Figure for proof of Theorem 1

� Let ∆ABC be a right triangle with right angle at C, and

� In three-dimensional space let
←→
AA′ be the perpendicular line to the

plane of the triangle.

� Let
←−→
BB′ and CC ′ be parallels to

←→
AA′ in direction of A′.

� These lines intersect the horosphere HP at B1, C1.

� Hence we get a triangle (with horocycle sides) ∆AB1C1 in the (Eu-
clidean) geometry on HP .
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Figure 4: Figure for proof of Theorem 1

� Write s1 = B̂1C1, s2 = ÂC1, s3 = ÂB1 and a = BC, b = AC, c = AB.

� By Lemma 6, we have

s2 = σ tanh(b/k), s3 = σ tanh(c/k)

and combining with Lemma 2

s1 = σ tanh(a/k)e−CC1/k.

� But also by Lemma 6,

eCC1/k = cosh(b/k),

so

s1 = σ
tanh(a/k)

cosh(b/k)
.

� In the Euclidean triangle ∆AB1C1 on the horosphere, we have

s2 = s3 cos(∠CAB)
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so

cos(∠CAB) =
tanh(b/k)

tanh(c/k)
(1)

Similarly,

cos(∠ABC) =
tanh(a/k)

tanh(c/k)

and then

sin(∠CAB) =
tanh(a/k)

cosh(b/k) tanh(c/k)
(2)

� Let a→∞. Then c→∞ as well and tanh(c/k)→ 1

� At the same time, in the right triangle ∠ABC, we have ∠CAB → Π(b)
(the angle of parallelism)

� From (1) we get
cos(Π(b)) = tanh(b/k)

while from (2) we get

sin(Π(b)) =
1

cosh(b/k)

� Now, use the trig identity

tan(θ/2) =
1− cos(θ)

sin(θ)

and we deduce

tan(Π(b)/2) =
1− tanh(b/k)

1/ cosh(b/k)
= e−b/k.

This is what we wanted to prove for the Bolyai-Lobachevsky Theo-
rem(!)

A byproduct of this set-up: The geometry of the horosphere is Euclidean
so in fact we have the relation s2

3 = s2
1 + s2

2, which yields:

cosh2(c/k) = cosh2(a/k) cosh2(b/k)

which is the analog of the Pythagorean Theorem for hyperbolic triangles(!!)
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