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§4 The Grobner Fan of an Ideal

Grobner bases for the same ideal but with respect to different monomial
orders have different properties and can look very different. For example,
the ideal
I=F-z+y—-1,22 —yz+z,9° — 22+ 2) C Qz,y, 2]

has the following three Grébner bases:

1. Consider the grevlex order with © > y > z. Since the leading terms of

the generators of I are pairwise relatively prime,
{Z2—z4+y—1,22 —yz+z,9° — 22+ 2}

is a monic (reduced) Grobner basis for 7 with respect to this monomial
order. Note that the basis has three elements.

2. Consider the weight order > greviez On Q[z, y, 2] with w = (2,1, 5).
This order compares monomials first according to the weight vector w
and breaks ties with the grevlex order. The monic Grébner basis for I
with respect to this monomial order has the form:

{z +y* —ay —y+ 20+ 4° + 2,9z — 2 — 1,
6 3 2 4 2,2 2 2
Yy +4y" +yzxt +4 -y -2y, 2°y" + 22+ 2y — 2° — x + x2y°,
2yt =2t — -2,y —2— 1}
This has seven instead of three elements.

3. Consider the lex order with £ > y > z. The monic Grobner basis for
this ideal is:

{2"% = 3210 — 228 + 427 4+ 625 4+ 142° — 152" — 172° + 22 + 92 + 6,
Y+ zgp77 (10552"" 4 5152 + 4227 — 36742° — 1295527 + 52852°
— 12502° + 368812* + 79052° + 4226522 — 63841z — 37186),

T+ zga-- (105521 + 51520 + 4227 — 36742° — 1295527 + 52852°
— 12502° + 368812* + 79052% + 328827 — 638412 + 1791)}

This basis of three elements has the triangular form described by the
Shape Lemma (Exercise 16 of Chapter 2, §4).

Many of the applications discussed in this book make crucial use of the
different properties of different Grobner bases. At this point, it is natural
to ask the following questions about the collection of all Grobner bases of
a fixed ideal I:

® Is the collection of possible Grobner bases of I finite or infinite?

¢ When do two different monomial orders yield the same monic (reduced)
Grobner basis for 1?7

® Is there some geometric structure underlying the collection of Grébner
bases of I that can help to elucidate properties of I?
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Answers to these questions are given by the construction of the Grébner
fan of an ideal I. A fan consists of finitely many closed convex polyhe-
dral cones with vertex at the origin (as defined in §2) with the following
properties:

a. Any face of a cone in the fan is also in the fan. (A face of a cone o is
o N {£ = 0}, where £ = 0 is nontrival linear equation such that £ > 0
on ¢. This is analogous to the definition of a face of a polytope.)

b. The intersection of two cones in the fan is a face of each.

These conditions are similar to the definition of polyhedral complex given in
Definition (3.5). The Grobner fan encodes information about the different
Grobner bases of I and was first introduced in the paper [MR] of Mora and
Robbiano. Our presentation is based on theirs.

The first step in this construction is to show that for each fixed ideal I,
as > ranges over all possible monomial orders, the collection of monomial
ideals (LT (1)) is finite. We use the notation

Mon(I) = {{rr>(I)) : > a monomial order}.

(4.1) Theorem. For an ideal I C k[z1,. .., z,], the set Mon(I) is finite.

PrOOF. Aiming for a contradiction, suppose that Mon(I) is an infinite
set. For each monomial ideal N in Mon(I), let >n be any one particular
monomial order such that N = (115 ,(I)). Let ¥ be the collection of
monomial orders {>x: N € Mon(I)}. Our assumption implies that ¥ is
infinite.

By the Hilbert Basis Theorem we have I = (fi,..., fs) for polynomials
fi € k[z1, ..., x,]. Since each f; contains only a finite number of terms, by
a pigeonhole principle argument, there exists an infinite subset ¥; C X such
that the leading terms vt~ (f;) agree for all > in ¥y and all 4,1 <4 < s.

We write N for the monomial ideal (LT (f1),...,LTs(fs)) (taking any
monomial order > in ¥;).
It F = {f1,.--, fs} were a Grobner basis for I with respect to some >q

in Y7, then we claim that F' would be a Grébner basis for I with respect
to every > in ¥p. To see this, let > be any element of ¥; other than >,
and let f € I be arbitrary. Dividing f by F using >, we obtain

(4.2) f=afi+ - +asfs +,

where no term in r is divisible by any of the rTs (f;). However, both >
and >; are in X, so LT~ (f;) = LT, (f;) for all 4. Since r = f — a1 f1 —
---—ayfs € I, and F is assumed to be a Grobner basis for I with respect
to >1, this implies that 7 = 0. Since (4.2) was obtained using the division
algorithm, LT~ (f) = LT (a; f;) for some 4, so LT (f) is divisible by LT (f;).
This shows that F' is also a Grobner basis for I with respect to >.
However, this cannot be the case since the original set of monomial orders
¥ D ¥; was chosen so that the monomial ideals (LT~ (I)) for > in ¥ were
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§4. The Grébner Fan of an Ideal 3

all distinct. Hence, given any >; in 31, there must be some fsy; € I such
that 11>, (for1) € (Lr>,(f1),...,L15,(fs)) = Ni. Replacing f,11 by its
remainder on division by fi,..., fs, we may assume in fact that no term
in fsy1 is divisible by any of the monomial generators for N;.

Now we apply the pigeonhole principle again to find an infinite subset
39 C ¥; such that the leading terms of fi,..., fs4+1 are the same for all
> in 2. Let No = (LT>(f1),...,LT>(fs41)) for all > in ¥y, and note
that Ny C Nj,. The argument given in the preceding paragraph shows
that {fi,..., fs+1} cannot be a Grdbner basis with respect to any of the
monomial orders in X5, so fixing >o€ X5, we find an fsyo € I such that
no term in fs1o is divisible by any of the monomial generators for Ny =
(L, (f1)s - - - L5 (fog1))-

Continuing in the same way, we produce a descending chain of infinite
subsets ¥ D ¥; D Y3 D 33 D ---, and an infinite strictly ascending chain
of monomial ideals N; C No C N3 C ---. This contradicts the ascending
chain condition in k[z1, ..., Z,], so the proof is complete. O

We can now answer the first question posed at the start of this section. To
obtain a precise result, we introduce some new terminology. It is possible for
two monic reduced Grébner bases of I with respect to different monomial
orders to be equal as sets, while the leading terms of some of the basis
polynomials are different depending on which order we consider. Examples
where I is principal are easy to construct; also see (4.9) below. A marked
Grébner basis for I is a set G of polynomials in I, together with an identified
leading term in each g € G such that G is a monic (reduced) Grébner basis
with respect to some monomial order selecting those leading terms. (More
formally, we could define a marked Grobner basis as a set GM of ordered
pairs (g, m) where {g : (9, m) € GM} is a monic (reduced) Grébner basis
with respect to some order >, and m = 115 (g) for each (g, m) in GM.)
The idea here is that we do not want to build a specific monomial order
into the definition of G. It follows from Theorem (4.1) that each ideal in
k[z1,...,2n] has only finitely many marked Grébner bases.

(4.3) Corollary. The set of marked Grébner bases of I is in one-to-one
correspondence with the set Mon(T).

PRrOOF. The key point is that if the leading terms of two marked Grébner
bases generate the same monomial ideal, then the Grébner bases must be
equal. The details of the proof are left to the reader as Exercise 4. O

Corollary (4.3) also has the following interesting consequence.
Exercise 1. Show that for any ideal I C k[z1, . .., ], there exists a finite

U C I such that U is a Grobner basis simultaneously for all monomial
orders on k[z1, ..., z,].
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A set U as in Exercise 1 is called a universal Grébner basis for I. These
were first studied by Weispfenning in [Wei], and that article gives an algo-
rithm for constructing universal Grobner bases. This topic is also discussed
in detail in [Stu2].

To answer our other questions we will represent monomial orders using
the matrix orders >,s described in Chapter 1, §2. Recall that if M has
rows w;, then @ >, @ if there is an £ such that a - w; = S - w; for
i=1...,0—1,but a-wy > - wy.

When > is a matrix order, the first row of M plays a special role and
will be denoted w in what follows. We may assume that w # 0.

Exercise 2.
a. Let >ps be a matrix order with first row w. Show that

we (R")" = {(a1,..-,a,) : a; >0, all i}.

We call (R*)" the positive orthant in R*. Hint: z; >y 1 for all i since
> s is a monomial order.

b. Prove that every nonzero w € (R*)¥ is the first row of some matrix M
such that >, is a monomial order.

¢. Let M and M’ be matrices such that the matrix orders >, and >
are equal. Prove that their first rows satisfy w = Aw’ for some A > 0.

Exercise 2 implies that each monomial order determines a well-defined
ray in the positive orthant (R”)", though different monomial orders may
give the same ray. (For example, all graded orders give the ray consisting
of positive multiples of (1,...,1).) Hence it should not be surprising that
our questions lead naturally to cones in the positive orthant.

Now we focus on a single ideal I. Let G = {g1,...,9:} be one of the
finitely many marked Grobner bases of I, with L1(g;) = 2*®, and N =
(z*®) .. 2*®) the corresponding element of Mon(I). Our next goal is
to understand the set of monomial orders for which G is the corresponding
marked Grobner basis of I. This will answer the second question posed at
the start of this section. We write

g9i = 0 +> " ¢;pa’,
B

where 2¢() > 28 whenever ¢; 5 # 0. By the above discussion, each such
order > comes from a matrix M, so in particular, to find the leading terms
we compare monomials first according to the first row w of the matrix.

If a(i) -w > f - wfor all g with ¢; 3 # 0, the single weight vector w
selects the correct leading term in g; as the term of highest weight. As we
know, however, we may have a tie in the first comparison, in which case we
would have to make further comparisons using the other rows of M. This
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suggests that we should consider the following set of vectors:
Co={we ®)":a(i)-w > B-w whenever ¢; 3 # 0}
={we (R")?" : (ai) = B) - w > 0 whenever ¢; 5 # 0}.

It is easy to see that C¢ is an intersection of closed half-spaces in R", hence
is a closed convex polyhedral cone contained in the positive orthant. There
are many close connections between this discussion and other topics we
have considered. For example, we can view the process of finding elements
of Cg as finding points in the feasible region of a linear programming
problem as in §1 of this chapter. Moreover, given a polynomial, the process
of finding its term(s) of maximum weight with respect to a given vector w is
equivalent to an integer programming maximization problem on a feasible
region given by the Newton polytope NP(f).

The cone C¢ has the property that if >js is a matrix order such that G
is the marked Grobner basis of I with respect to >, then the first row w
of M lies in C'¢. However, you will see below that the converse can fail, so
that the relation between Cg and monomial orders for which G is a marked
Grobner basis is more subtle than meets the eye.

In the following example we determine the cone corresponding to a given
marked Grobner basis for an ideal.

(4.4)

(4.5) Example. Consider the ideal
(4.6) I={(2?-y,xz—9y*+yz) C Qa,y,2]

The marked Grobner basis with respect to the grevlex order withx > y > 2
is

G(l) = {ﬁ_ y7£ — Tz — yz}:

where the leading terms are underlined. Let w = (a, b, ¢) be a vector in
the positive orthant of R®. Then w is in Cgoy if and only if the following
inequalities are satisfied:

(2,0,0) - (a,b,¢) > (0,1,0) - (a,b,¢) or 2a>b

0,2,0) - (a,b,¢) > (1,0,1) - (a,b,c) or 2b>a+c

0,2,0) - (a,b,¢) > (0,1,1) - (a,b,¢) or 2b>b+ec.

To visualize Cg, slice the positive orthant by the plane a + b+ ¢ =1
(every nonzero weight vector in the positive orthant can be scaled to make
this true). The above inequalities are pictured in Figure 4.1, where the a-
axis, b-axis and c-axis are indicated by dashed lines and you are looking
toward the origin from a point on the ray through (1,1, 1).

In this figure, the inequality 2a > b gives the region in the slice to the
left (as indicated by the arrow) the line segment connecting (0, 0, 1) at the
top the triangle to (4, 2,0) on the base. The other two inequalities are
represented similarly, and their intersection in the first orthant gives the
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FIGURE 4.1. A Slice of the Cone C)

shaded quadrilateral in the slice. Then Cna) consists of all rays emanating
from the origin which go through points of the quadrilateral.

Any weight w corresponding to a point in the interior of C1) (where the
inequalities above are strict) will select the leading terms of elements of G(*)
exactly; a weight vector on one of the boundary planes in the interior of the
positive orthant will yield a “tie” between terms in one or more Grébner
basis elements. For instance (a,b,¢) = (1,1,1) satisfies 2b = a + ¢ and
2b = b + ¢, so it is on the boundary of the cone. This weight vector is not
sufficient to determine the leading terms of the polynomials.

Now consider a diffferent monomial order, say the grevlex order with
z >y > z. For this order, the monic Grébner basis for I is

G® = {2’ —y,yz + 2z - ¥’}
where again the leading terms are underlined. Proceeding as above, the slice
of Cy2) in the plane a + b + ¢ = 1 is a triangle defined by the inequalities
2a > b, b>a, c>0b.

You should draw this triangle carefully and verify that Cpa) N Cge) is a
common face of both cones (see also Figure 4.2 below).

Exercise 3. Consider the grlex order with > y > z. This order comes

from a matrix with (1,1, 1) as first row. Let I be the ideal from (4.6).

a. Find the marked Grobner basis G of I with respect to this order.

b. Identify the corresponding cone Cg and its intersections with the two
cones Cgay and Cg2y. Hint: The Grobner basis polynomials contain

/
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more terms than in the example above, but some work can be saved by
the observation that if 27" divides 2® and w € (R*)*, then a-w > 3-w
implies a - w > ' - w.

Example (4.5) used the grevlexr order with z > y > z, whose matrix
has the same first row (1,1, 1) as the grlez order of Exercise 3. Yet they
have very different marked Grobner bases. As we will see in Theorem (4.7)
below, this is allowed to happen because the weight vector (1,1,1) is on
the boundary of the cones in question.

Here are some properties of Cg in the general situation.

(4.7) Theorem. Let I be an ideal in k[z1,...,z,], and let G be a marked

Grébner basis of I.

a. The interior Int(Cg) of the cone Cg is a nonempty open subset of R™.

b. Let >y be any matriz order such that the first row of M lies in Int(Cg).
Then G is the marked Grébner basis of I with respect to > .

c. Let G' be a marked Grébner basis of I different from G. Then the in-
tersection Cqg N Cqr is contained in a boundary hyperplane of Cq, and
similarly for Cer.

d. The union of all the cones Cq, as G ranges over all marked Gréibner
bases of I, is the positive orthant (R")™.

ProoF. To prove part a, fix a matrix order > such that G is a marked
Grdbner basis of I with respect to >,s and let wq, ..., w,, be the rows of
M. We will show that Int(Cg) is nonempty by proving that

(4.8) W =W +ewy + -+ + " rw, € Int(Cg)

provided e > 0 is sufficiently small. In Exercise 5, you will show that given
exponent vectors o and [, we have

2% >y 2 = a-w > - w provided € > 0 is sufficiently small,

where “sufficiently small” depends on «, § and M. It follows that we can
arrange this for any finite set of pairs of exponent vectors. In particular,
since z() = 1y, (2 + >3 Cipe’), we can pick € so that

a(i) -w > - w whenever ¢; 3 # 0

in the notation of (4.4). Furthermore, using z; > 1 for all 4, we can also
pick € so that e;-w > 0 (where e; is the 7th standard basis vector). It follows
that w is in the interior of the positive orthant. From here, w € Int(Cg)
follows immediately.

For part b, let >,; be a matrix order such that the first row of M lies in
Int(Cg). This easily implies that for every g € G, 1.Ts,,(g) is the marked
term of g. From here, it is straightforward to show that G is the marked
Grobner basis of I with respect to > ;. See Exercise 6 for the details.

We now prove part c¢. In Exercise 7, you will show that if Cqg N Cg:
contains interior points of either cone, then by part a it contains interior
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points of both cones. If w is such a point, we take any monomial order > s
defined by a matrix with first row w. Then by part b, G and G’ are both
the marked Grébner bases of I with respect to >as. The contradicts our
assumption that G # G'.

Part d follows immediately from part b of Exercise 2. O

With more work, one can strengthen part ¢ of Theorem (4.7) to show
that Ce N Cqr is a face of each (see [MR] or [Stu2] for a proof). It follows
that as G ranges over all marked Grébner bases of I, the collection formed
by the cones Cs and their faces is a fan, as defined earlier in the section.
This is the Grébner fan of the ideal 1.

For example, using the start made in Example (4.5) and Exercise 3, we
can determine the Grébner fan of the ideal I from (4.6). In small examples
like this one, a reasonable strategy for producing the Grobner fan is to
find the monic (reduced) Grobner bases for I with respect to “standard”
orders (e.g., grevler and lex orders with different permutations of the set of
variables) first and determine the corresponding cones. Then if the union
of the known cones is not all of the positive orthant, select some w in
the complement, compute the monic Grébner basis for >w grevies, find the
corresponding cone, and repeat this process until the known cones fill the
positive orthant.

For the ideal of (4.6), there are seven cones in all, corresponding to the
marked Grobner bases:

G = {2 —y,y° —zz — yz}
G® = {22 — Y, yz + 2z — y°}
GO = {z* — 2?2 — 22,y — 2%}
G — {ﬁ_y,%—y2+yz,gﬁ_z+wy2 —y® —yz}
(4.9) GO = {y* — 232 + 4?2 -y, 2z — 4 + yz,
o2 — ¥+ —yz, 2% —y)

GO = {4222 — 2Pz + y* —y2P ez — y* + y2,

oy’ —y® + v’z —yz,2® —y}
G = {y — 2%, 2%2 — 2* + z2}.

(Note that G®®) is the Grobner basis from Exercise 3.)

Figure 4.2 below shows a picture of the slice of the Grébner fan in the
plane a+ b+ ¢ = 1, following the discussion from Example (4.5). The cones
are labeled as in (4.9).

For instance, if the Grobner bases G, ..., G®) in this example are
known, the “missing” region of the positive orthant contains (for instance)
the vector w = (1/10,2/5,1/2) (see Figure 4.2). Using this weight vector,
we find G(7), and the corresponding cone completes the Grébner fan.
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w = (1/10, 2/5, 1/2)

\

FIGURE 4.2. A Slice of the Grobner Fan

When the number of variables is larger and/or the ideal generators have
more terms, this method becomes much less tractable. Mora and Robbiano
propose a “parallel Buchberger algorithm” in [MR] which produces the
Grobner fan by considering all potential identifications of leading terms
in the computation and reduction of S-polynomials. But their method is
certainly not practical on larger examples either. Grobner fans can be
extremely complicated! Fortunately, Grobner fans are used primarily as
conceptual tools—it is rarely necessary to compute large examples.

If we relax our requirement that w lie in the first orthant and only ask
that w pick out the correct leading terms of a marked Groébner basis of
I, then we can allow weight vectors with negative entries. This leads to a
larger “Grobner fan” denoted GF(I) in [Stu2]. Then the Grobner fan of
Theorem (4.7) (sometimes called the restricted Grébner fan) is obtained
by intersecting the cones of GF(I) with the positive orthant. See [MR] and
[Stu2] for more about what happens outside the positive orthant.

We close this section with a comment about a closely related topic. In the
article [BM] which appeared at the same time as [MR], Bayer and Morrison
introduced the state polytope of a homogeneous ideal. In a sense, this is the
dual of the Grobner fan GF(I) (more precisely, the vertices of the state
polytope are in one-to-one correspondence with the elements of Mon([),
and GF(I) is the normal fan of the state polytope). The state polytope
may also be seen as a generalization of the Newton polytope of a single
homogeneous polynomial. See [BM] and [Stu2] for more details.
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In the next section, we will see how the Grobner fan can be used to de-
velop a general Grébner basis conversion algorithm that, unlike the FGLM
algorithm from Chapter 2, does not depend on zero-dimensionality of 1.

ApbpiTioNAL EXERCISES FOR §4
Exercise 4. Using the proof of Proposition (4.1), prove Corollary (4.3).

Exercise 5. Assume that z® >, 2%, where M is an m x n matrix giving
the matrix order >,7. Also define w as in (4.8). Prove that o -w > 3 - w
provided that € > 0 is sufficiently small.

Exercise 6. Fix a marked Grobner basis G of an ideal I and let > be a
monomial order such that for each g € G, LTx(g) is the marked term of the
polynomial g. Prove that G is the marked Grobner basis of I with respect
to >. Hint: Divide f € I by G using the monomial order >.

Exercise 7. Show that if the intersection of two closed, n-dimensional
convex polyhedral cones C, C' in R" contains interior points of C, then the
intersection also contains interior points of C".

Exercise 8. Verify the computation of the Grobner fan of the ideal
from (4.6) by finding monomial orders corresponding to each of the seven
Grobner bases given in (4.9) and determining the cones Cgx)-

Exercise 9. Determine the Grobner fan of the ideal of the affine twisted
cubic curve: I = (y — 22,2 — 23). Explain why all of the cones have a
common 1-dimensional edge in this example.

Exercise 10. This exercise will determine which terms in a polynomial

f= Ele c;z®® can be LT(f) with respect to some monomial order.

a. Show that z*1) is L1(f) for some monomial order if and only if there
is some vector w in the positive orthant such (a(1) — a(j)) - w > 0 for
allj=2,... k.

b. Show that such a w exists if and only if the origin is not in the convex
hull of the set of all (a(1) — «a(j)) for j = 2,...,k, together with the
standard basis vectors e;, ¢ = 1,...,n in R”.

c. Use the result of part b to determine which terms in f = 2%yz +2zyw? +
22w — zw + yzw + 3 can be L1(f) for some monomial order. Determine

an order that selects each of the possible leading terms.

Exercise 11. Determine the Grébner fan of the following ideals:
a. I = (2%y2? — 22y — y2° + 4222 + 2y2).
b. I = (zx—ty—t>—1t).
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85 The Grobner Walk

One interesting application of the Grobner fan is a general Grébner basis
conversion algorithm known as the Grébner Walk. As we saw in the dis-
cussion of the FGLM algorithm in Chapter 2, to find a Grébner basis with
respect to an “expensive” monomial order such as a lex order or another
elimination order, it is often simpler to find some other Grébner basis first,
then convert it to a basis with respect to the desired order. The algorithm
described Chapter 2 does this using linear algebra in the quotient algebra
k[x1,...,2n]/I, so it applies only to zero-dimensional ideals.

In this section, we will present the Grobner Walk introduced by Collart,
Kalkbrener, and Mall in [CKM]. This method converts a Grobner basis
for any ideal I C k[zi,...,z,] with respect to any one monomial order
into a Grobner basis with respect to any other monomial order. We will
also give examples showing how the Walk applies to elimination problems
encountered in implicitization.

The basic idea of the Grobner Walk is pleasingly simple. Namely, we
assume that we have a marked Grobner basis G for I, say the marked
Grobner basis with respect to some monomial order >4. We call > the
starting order for the walk, and we will assume that we have some matrix
M with first row w, representing >,. By the results of the previous section,
G corresponds to a cone Cg in the Grébner fan of I.

The goal is to compute a Grébner basis for I with respect to some other
given target order >;. This monomial order can be represented by some a
matrix M; with first row w;. Consider a “nice” (e.g., piecewise linear) path
from wy to w; lying completely in the positive orthant in R™. For instance,
since the positive orthant is convex, we could use the straight line segment
between the two points, (1 — u)wy + uw, for u € [0, 1], though this is not
always the best choice. The Grébner Walk consists of two basic steps:

® (Crossing from one cone to the next.
e Computing the Grébner basis of I corresponding to the new cone.

These steps are done repeatedly until the end of the path is reached, at
which point we have the Groébner basis with respect to the target order.
We will discuss each step separately.

Crossing Cones

Assume we have the marked Grobner basis G4 corresponding to the cone
Cod, and a matrix M4 with first row w4 representing >,4. As we con-
tinue along the path from w4, let w,., be the last point on the path
which lies in the cone C4.

The new weight vector Wy, may be computed as follows. Let G,;q =
{z20) + 3, seipa? 1 < i < t}, where 2*() is the leading term with
respect to > M- To simplify notation, let vy, ..., v, denote the vectors
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a(i) — B where 1 < i < tand ¢;g # 0. By (4.4), Coiq consists of those
points in the positive orthant (R")* for which

w-v; >0, 1<j5<m.
For simplicity say that the remaining portion of the path to be traversed
consists of the straight line segment from w4 to w;. Parametrizing this

line as (1 — u)wyq + uwy for u € [0,1], we see that the point for the
parameter value u lies in C,4 if and only if

(5.1) (1 — w)(Worq - v;) +u(wy -v;) >0, 1<j<m.
Then Wypew = (1 — Uast)Woid + Uiast W, Where uyqs¢ is computed by the
following algorithm:
Input: woiq, Wi, U1, ..., Uy
Output: uygst
Ulgst = 1
(5.2) FORj=1,...,m DO
Wolid * Uj

IF w; - v; < 0 THEN u; := Wolg Vi — Wy -V,
o J J

IF U; < Ulgst THEN wujq6 := Uj

The idea behind (5.2) is that if w; - v; > 0, then (5.1) holds for all
u € [0,1] since Wyq - v; > 0. On the other hand, if w; - v; < 0, then the
formula for u; gives the largest value of u such that (5.1) holds for this
particular j. Note that 0 < u; < 1 in this case.

Exercise 1. Prove carefully that Wpew = (1 — Ujast)Woid + Uiast Wy is the
last point on the path from w4 to w; which lies in Cfp4.

Once we have w,,.,,, we need to choose the next cone in the Grobner fan.
Let >pe be the weight order where we first compare w,.,,-weights and
break ties using the target order. Since >; is represented by M, it follows
that >p.. is represented by (wﬁt”). This gives the new cone Chey.

Furthermore, if we are in the situation where M; is the bottom of the
matrix representing >,;4 (which is what happens in the Grobner Walk),
the following lemma shows that whenever w4 # Wy, the above process is
guaranteed to move us closer to wy.

(5.3) Lemma. Let ujqs; be as in (5.2) and assume that >4 is represented
by ("y\;ltd) Then ujqse > 0.

PrOOF. By (5.2), uigst = 0 implies that wyq - v; = 0 and wy - v; < 0 for
some j. But recall that v; = a(i) — 3 for some g = z*(?) +2 5 ciprl € G,
where 2% is the leading term for >,;q and ¢; g # 0. It follows that

(5.4) Woid - (i) = woig - 8 and  wy - ai) < wg - B.
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Since >4 is represented by (%37¢), the equality in (5.4) tells us that z(®)
and z® have the same w,;4-weight, so that we break the tie using M;. But
w; is the first row of My, so that the inequality in (5.4) implies that z*(?
is not the leading term for >,;4. This contradiction proves the lemma. O

Converting Grobner Bases

Once we have crossed from Cyq into the Cpeyn, we need to convert the
marked Grébner basis G,q into a Grobner basis for I with respect to the
monomial order >, represented by (w]('/[iw). This is done as follows.

The key feature of Wy, is that it lies on the boundary of Cy4, so that
some of the inequalities defining C,;4 become equalities. This means that
the leading term of some g € G4 has the same w,,¢,,-weight as some other
term in g. In general, given a weight vector w is the positive orthant (R?)*
and a polynomial f € k[z1,...,Z,], the initial form of f for w, denoted
inw(f), is the sum of all terms in f of maximum w-weight. Also, given a
set S of polynomials, we let iny (S) = {inw(f) : f € S}.

Using this notation, we can form the ideal

(inw,., (God))

of W,eqo-initial forms of elements of G ;4. Note that w,,e,, € Cp1q guarantees
that the marked term of g € Guq appears in inw,,, (g9). The important
thing to realize here is that in nice cases, inw, ., (Goq) consists mostly of
monomials, together with a small number of polynomials (in the best case,
only one binomial together with a collection of monomials).

It follows that finding a monic Grobner basis

H={hy,... hs}

of (iny,,, (Goq)) with respect to >, may usually be done very quickly.
The surprise is that once we have H, it is relatively easy to convert G4
into the desired Grobner basis.

(5.5) Proposition. Let Gyq be the marked Grobner basis for an ideal I
with respect to >,q. Also let >, be represented by (wj’\;ﬁ‘”), where Wyeq
is any weight vector in Cyq, and let H be the monic Grébner basis of

(inw,., (Goia)) with respect to >y as above. Express each h; € H as
(5.6) hj =Y Diginw,..(9).
9€Go1d

Then replacing the initial forms by the g themselves, the polynomials

(57) hj = Z pj79 g; 1 SJ S S,
9€Go1a

form a Grébner basis of I with respect to > ey .
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Before giving the proof, we need some preliminary observations about
weight vectors and monomial orders. A polynomial f is w-homogeneous
if f = inw(f). In other words, all terms of f have the same w-weight.
Furthermore, every polynomial can be written uniquely as a sum of w-
homogeneous polynomials which are its w-homogeneous components (see
Exercise 5).

We say that a weight vector w is compatible with a monomial order > if
LT (f) appears in iny (f) for all nonzero polynomials f. Then we have the
following result.

(5.8) Lemma. Fizw € (R*)* \ {0} and let G be the marked Grébner

basis of an ideal I for a monomial order >.

a. Ifw is compatible with >, then 115 (I) = LTs (inw (1)) = 1> (inw (1))).

b. If w € Cg, then ing(GQ) is a Grébner basis of (inw(I))) for >. In
particular,

(inw (1)) = (inw(G))-

Proor. For part a, the first equality L1~ (I) = LT (inw(I)) is obvious
since the leading term of any f € k[zi,...,zy] appears in iny(f). For
the second equality, it suffices to show LT (f) € LT (inw(l)) whenever
f € (inw(I)). Given such an f, write it as

t
f= Zpi inw(fi), pi €k[z1,...,3,], fi € L.
i=1
Each side is a sum of w-homogeneous components. Since iny, (f;) is already
w-homogeneous, this implies that

t
inw(f) = Z qi inw(f’i);
i=1

where we can assume that ¢; is w-homogeneous and f and g¢;f; have the

same w-weight for all 4. Tt follows that iny (f) = inw (30, gi f;) € inw(I).

Then compatibility implies LTs (f) = LTs (inw(f)) € LTs (inw (1)).
Turning to part b, first assume that w is compatible with >. Then

(Lr> (1)) = (Lr>(G)) = (Lr> (inw (G))),

where the first equality follows since G is a Grobner basis for > and the
second follows since w is compatible with >. Combining this with part a,
we see that (LT ({inw (1)))) = (LTs (inw (G))). Hence iny (G) is a Grobner
basis of (in (I)) for >, and the final assertion of the lemma follows.

It remains to consider what happens when w € Cg, which does not nec-
essarily imply that w is compatible with > (see Exercise 6 for an example).
Consider the weight order >’ which first compares w-weights and breaks
ties using >. Note that w is compatible with >'.
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The key observation is that since w € Cg, the leading term of each g € G
with respect to >’ is the marked term. By Exercise 6 of §4, it follows that
G is the marked Grobner basis of I for >'. Since w is compatible with >/,
the earlier part of the argument implies that iny (G) is a Grobner basis
of (inw(I)) for >'. However, for each g € G, iny(g) has the same leading
term with respect to > and >'. Using Exercise 6 of §4 again, we conclude
that inw (G) is a Grébner basis of (iny (1)) for >. a0

We can now prove the proposition.

PrOOF OF PROPOSITION (5.5). We will give the proof in three steps.
Since > ey is represented by (wj(';t”), Whew iS compatible with >,c. By
part a of Lemma (5.8), we obtain

Lrs,., (1) = 175 ., (inw,., (1)))-

The second step is to observe that since Wpe,, € Coq, the final assertion
of part b of Lemma (5.8) implies

<inwnew (I)> = <inwnew (GOId))'
For the third step, we show that

(inw,., (Goa)) = (15, (H)) = (L5, (H)),

where H = {hy,..., h;} is the given Grobner basis of (inyw,,., (Goq)) and
H = {hy,...,h} is the set of polynomials described in the statement of
the proposition. The equality is obvious, and for the second, it suffices to
show that for each j, Lrs,., (h;) = LTs, ., (h;). Since the iny, ., (g) are
Wpew-homogeneous, Exercise 7 below shows that the same is true of the h;
and the g; 4. Hence for each g, all terms in ¢; 4(g9 — inw,,.,, (9)) have smaller
Whnew Weight than those in the initial form. Lifting as in (5.7) to get h; adds
only terms with smaller w,,¢,, weight. Since >,,¢, is compatible with w ¢,
the added terms are also smaller in the new order, so the >, -leading term
of hj is the same as the leading term of h;.
Combining the three steps, we obtain

(Lrs., (D) = (urs,., (H)).

Since h; € I for all j, we conclude that H is a Grobner basis for I with
respect t0 > e, as claimed. O

The Grobner basis H from Proposition (5.5) is minimal, but not nec-
essarily reduced. Hence a complete interreduction is usually necessary to
obtain the marked Grobner basis G,¢q corresponding to the next cone. In
practice, this is a relatively quick process.

In order to use Proposition (5.5), we need to find the polynomials p; 4
in (5.6) expressing the Grébner basis elements hj; in terms of the ideal
generators of inw,,, (Gorq). This can be done in two ways:
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e First, the p; 4 can be computed along with H by an extended Buchberger
algorithm (see for instance [BW], Chapter 5, Section 6).

e Second, since inw,,,(Goq) is a Grobner basis of (inw,,,(Goq)) with
respect to >,1q by part b of Lemma (5.8), the p;, can be obtained by
dividing h; by inw,., (Geq) using >uq4.

In practice, the second is often more convenient to implement. The process
of replacing the w,¢,,-initial forms of the g by the g themselves to go from
(5.6) to (5.7) is called lifting the initial forms to the new Grébner basis.

The Algorithm

The following algorithm is a basic Grébner Walk, following the straight
line segment from w, to wy.

(5.9) Theorem. Let

1. NextCone be a procedure that computes ujqs; from (5.2). Recall that
Wiew = (1 — Uast)Woid + Uiast W i the last weight vector along the path
which lies in the cone Cyq of the previous Grobner basis Goiq.

2. Lift be a procedure that lifts a Grobner basis for the Wyey -initial forms
of the previous Grobner basis G,q with respect to >peq to the Grobner
basis Gpew following Proposition (5.5).

3. Interreduce be a procedure that takes a given set of polynomials and
interreduces them with respect to a given monomial order.

Then the following algorithm correctly computes a Grébner basis for I with
respect to >; and terminates in finitely many steps on all inputs:

Input: My and M; representing start and target orders with first
rows w, and wg, G = Grobner basis with respect to >,

Output: last value of Gy = Grébner basis with respect to >y,

Mo == M;

Gota = G5

Wnew = Ws

Mo 1= ()

done := false
WHILE done = false DO
In = iny, ., (Go)
InG := gbasis(In, >r,..,)
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Grew = Lift(InG, Goig, In, Mpew, Moiq)
Grew = Interreduce(Grew, Mpew)

u := NextCone(Grew, Wnew, Wt)

IF W, = w; THEN

done = true

ELSE
Motd := Mpew
Gotd = Grew
Whew = (1 — U)Wyew + uwy
RETURN (Grew)

PRrOOF. We traverse the line segment from w, to w;. To prove termina-
tion, observe that by Corollary (4.3), the Grobner fan of I = (G,) has
only finitely many cones, each of which has only finitely many bounding
hyperplanes as in (4.4). Discarding those hyperplanes which contain line
segment from wg to wy, the remaining hyperplanes determine a finite set
of distingushed points on our line segment.

Now consider uj,s; = NextCone(Grew, Wnew, Wi) as in the alorithm.
This uses (5.2) with w4 replaced by the current value of Wy, . Further-
more, notice tha the monomial order always comes from a matrix of the
form (). It follows that the hypothesis of Lemma (5.3) is always satis-
fied. If w45t = 1, then the next value of w,.,, is Wy, so that the algorithm
terminates after one more pass through the main loop. On the other hand,
if wigst = u; < 1, then the next value of Wyey lies on the hyperplane
w - v; = 0, which is one of our finitely many hyperplanes. However, (5.2)
implies that w; - v; < 0 and Wpeyw - v; > 0, so that the hyperplane meets
the line segment in a single point. Hence the next value of wy,e,, is one of
our distingushed points. Furthermore, Lemma, (5.3) implies that w5 > 0,
so that if the current w,,,, differs from w;, then we must move to a dis-
tingushed point further along the line segment. Hence we must eventually
reach wy, at which point the algorithm terminates.

To prove correctness, observe that in each pass through the main loop,
the hypotheses of Proposition (5.5) are satisfied. Furthermore, once the
value of wye, reaches wy, the next pass through the loop computes a
Grobner basis of I for the monomial order represented by (J‘Cfi) Using
Exercise 6 of §4, it follows that the final value of G is the marked
Grobner basis for >;. d
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The complexity of the Grobner Walk depends most strongly on the num-
ber of cones that are visited along the path through the Grobner fan, and
the number of different cones that contain the point w,.,, at each step. We
will say more about this in the examples below.

Ezamples

We begin with a simple example of the Grobner Walk in action. Consider
the ideal I = (x? — y,z2 — 3% + yz) C Q[z, y, 2] from (4.6). We computed
the full Grébner fan for I in §4 (see Figure 4.2). Say we know

Gs :G(l) :{:ﬁ—y,ﬁ—wz—yz}

from (4.9). This is the Grobner basis of I with respect to > (5 4,1),grevtes
(among many others!). Suppose we want to determine the Grébner basis
with respect to >6,1,3),te (Which is G(©)). We could proceed as follows. Let

M, =

— = O
— =
O =

so ws = (5,4,1). Following Exercise 6 from Chapter 1, §2, we have used
a square matrix defining the same order instead of the 4 x 3 matrix with
first row (5,4, 1) and the next three rows from a 3 x 3 matrix defining the
grevlex order (as in part b of Exercise 6 of Chapter 1, §2). Similarly,

6 1 3
M,=[1 0 0
010

and w; = (6,1,3). We will choose square matrices defining the appro-
priate monomial orders in all of the following computations by deleting
appropriate linearly dependent rows.

We begin by considering the order defined by

Myew =

== Oy O

4
1
0

O W =

(using the weight vector Wy, = (5,4, 1) first, then refining by the tar-
get order). The Wy, initial forms of the Grébner basis polynomials with
respect to this order are the same as those for G, so the basis does not
change in the first pass through the main loop.

We then call the NextCone procedure (5.2) with wy,e,, in place of w,q4.
The cone of >, is defined by the three inequalities obtained by com-

new

paring 22 vs. y and y? vs. zz and y2. By (5.2), ujas is the largest u such
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that (1 —u)(5,4,1) +u(6, 1, 3) lies in this cone and is computed as follows:

22 vs. y :
v = (2,-1,0),w-v3 =6>0=u; =1
Y2 vs. xz
v2 = (=1,2,-1), Wi vy = =T <0 = up = gWnewtz 5 = 2
y? vs. yz
ve = (0,—,=1),w;-v3=—-2<0=u3 = et s = 3.
The smallest u value here is ujqst = %. Hence the new weight vector is

Woew = (1 — 2)(5,4,1) + 2(6,1,3) = (47/9,10/3,13/9), and M4 and

47/9 10/3 13/9
Mpew=| 6 1 3
1 0 0

are updated for the next pass through the main loop.

In the second pass, In = {y?> — zz,2?}. We compute the Grébner basis
for (In) with respect t0 >peq (with respect to this order, the leading term
of the first element is zz), and find

H = {—y® + z2, 2%, 2%, y*}.
In terms of the generators for (In), we have
P’ +xz=—-1-(y> —z2) +0-(z?)
22 =0-(y? —z2) +1-(2?)
vy =z (y? —z2) + 2 (2%)
y' = (y* +a2) - (y° —z2) + 27 - (27).
So by Proposition (5.5), to get the next Grobner basis, we lift to
—1-(? —zz—y2)+0- (2> —y) =22 +yz —y?

0-( —zz—yz)+1- (2" —y)=2>—y
oy —zz—y2)+z- (" —y) =ay’ —zyz —yz
W +x2) - (v° — 2z —yz) + 2°- (2" —y) = y" — v’z — 2yz® -y

Interreducing with respect to >y, we obtain the marked Grébner basis
Grew given by

{zz+yz -9 22 —y,29” — o + 9’2 —yz,y! - 20°2 + y72% - y2®).
(This is G®) in (4.9).) For the call to NextCone in this pass, we use the
parametrization (1 —u)(47/9,10/3,13/9) 4+ u(6, 1, 3). Using (5.2) as above,
we obtain ujas: = 17/35, for which wpe,, = (28/5,11/5,11/5).

In the third pass through the main loop, the Grébner basis does not
change as a set. However, the leading term of the initial form of the last
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polynomial y* — 2y%2 + %22 — y2? with respect to >pz,.. is now y22? since

28/5 11/5 11/5
Mpew = | 6 1 3
1 0 0

Using Proposition (5.5) as usal to compute the new Grobner basis Gpew,
we obtain

(5.10) {zz+yz -y, 2> —y, 2y’ = + ¥’ 2 —yz,¥°2" — 292 + y* —y2®}

which is G® in (4.9). The call to NextCone returns w;,s¢ = 1, since there
are no pairs of terms that attain equal weight for any point on line segment
parametrized by (1 —u)(75/13,22/13,33/13) 4+ u(6, 1, 3). Thus Wy, = Wy.
After one more pass through the main loop, during which G, doesn’t
change, the algorithm terminates. Hence the final output is (5.10), which
is the marked Grobner basis of T with respect to the target order.

We note that it is possible to modify the algorithm of Theorem (5.9) so
that the final pass in the above example doesn’t occur. See Exercise 8.

Exercise 2. Verify the computation of w;,s in the steps of the above
example after the first.

Exercise 3. Apply the Grobner Walk to convert the basis G for the
above ideal to the basis G*) (see (4.9) and Figure (4.2)). Take >, =

>(2,7,1),grevles and >; = >(3,1,6),grevlez-

Many advantages of the Walk are lost if there are many terms in the
W e initial forms. This tends to happen if a portion of the path lies in a
face of some come, or if the path passes through points where many cones
intersect. Hence in [AGK], Amrhein, Gloor, and Kiichlin make systematic
use of perturbations of weight vectors to keep the path in as general a
position as possible with respect to the faces of the cones. For example, one
possible variant of the basic algorithm above would be to use (4.8) to obtain
a perturbed weight vector in the interior of the corresponding cone each
time a new marked Grobner basis is obtained, and resume the walk to the
target monomial order from there. Another variant designed for elimination
problems is to take a “sudden-death” approach. If we want a Grobner basis
with respect to a monomial order eliminating the variables xz1,..., x,,
leaving ¥, ..., Ym, and we expect a single generator for the elimination
ideal, then we could terminate the walk as soon as some polynomial in
k[y1,-..,ym] appears in the current Ge,. This is only guaranteed to be
a multiple of the generator of the elimination ideal, but even a polynomial
satisfying that condition can be useful in some circumstances. We refer the
interested reader to [AGK] for a discussion of other implementation issues.

In [Tran], degree bounds on elements of Grébner bases are used to pro-
duce weight vectors in the interior of each cone of the Grébner fan, which
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gives a deterministic way to find good path perturbations. A theoretical
study of the complexity of the Grébner Walk and other basis conversion
algorithms has been made by Kalkbrener in [Kal].

Our next example is an application of the Grébner Walk algorithm to
an implicitization problem inspired by examples studied in robotics and
computer aided design. Let C; and C3 be two curves in R3. The bisector
surface of C1; and Cy is the locus of points P equidistant from Cy and
C (that is, P is on the bisector if the closest point(s) to P on C; and
Cy are the same distance from P.) See, for instance, [EK]. Bisectors are
used, for instance, in motion planning to find paths avoiding obstacles in an
environment. We will consider only the case where C; and Cs are smooth
complete intersection algebraic curves C; = V(f1,¢91) and Cy = V(f2, g2).
(This includes most of the cases of interest in solid modeling, such as lines,
circles and other conics, etc.) P = (z,y, 2) is on the bisector of C; and Cy
if there exist Q1 = (1,91, 21) € C1 and Q2 = (x2, Y2, 22) € Cs such that
the distance from P to C; is a minimum at (;, ¢ = 1,2 and the distance
from P to @1 equals the distance from P to (0. Rather than insisting on an
absolute minimum of the distance function from P to C; at @;, it is simpler
to insist that the distance function simply have a critical point there. It is
easy to see that this condition is equivalent to saying that the line segment
from P to @); is orthogonal to the tangent line to C; at @);.

Exercise 4. Show that the distance from C; to P has a critical point at
@; if and only if the line segment from P to @); is orthogonal to the tangent
line to C; at @;, and show that this is equivalent to saying that

(Vfi(Q:) x Vgi(Qs)) - (P — Qi) =0,

where V f;(Q;) denotes the gradient vector of f; at @;, and x is the cross
product in R®.

By Exercise 4, we can find the bisector as follows. Let (z;,y;, 2;) be a
general point @; on C;, and P = (z, y, z). Consider the system of equations

0= fi(z1,41,2)
0= gi(z1,91,21)
0= f2(w27y27z2)
0 = g2(22, 92, 22)
0= (VAi(z1,91,21) x Vgi(z1,91,21)) - (& — 21,y — y1,2 — 21)
0 = (Vfa(w2,y2, 22) X Vga(x2,y2,22)) - (T — T2,y — Y2, 2 — 22)
O=@-=)’+@Wy—-—un)’+ k-2

— (@ —2)? = (y —92)> = (z — 2)

Let J C R[z1,y1, 21, T2, Y2, 22, T, Yy, 2] be the ideal generated by these 7
equations. We claim the bisector will be contained in V(I), where I is

(5.11)

2
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the elimination ideal I = J N Rz, y, 2]. A proof proceeds as follows: P =
(z,y,2) is on the bisector of Ci and C> if and only if there exist Q; =
(24, vi, 2;) such that @Q; € C;, @; is a minimum of the distance function
to P, restricted to C;, and PQ; = P(Q2. Thus P is in the bisector if
and only if the equations in (5.11) are satisfied for some (x;,y;, 2;) € C;.
Therefore, P is the projection of some point in V(J), hence in V(I). Note
that (5.11) contains 7 equations in 9 unknowns, so we expect that V(J)
and its projection V(I) have dimension 2 in general.

For instance, if C is the twisted cubic V(y — 22,2z — 2®) and C5 is the
line V(z,y — 1), then our ideal J is

J = (y1 —af,z1 — af, 22,92 — 1,
T — 21 +221(y — 1) + 322(2 — 21), 2 — 22,
(@ —21)* + (y — 1) + (z — 21)?
—(z - 1’2)2 —(y— 212)2 —(z— Z2)2>

(5.12)

We apply the Grobner Walk with > the grevlex order with 1 > y; >
21 > T2 > Y2 > 22 > x>y > 2z, and >4 the >y grevies Order, where
w = (1,1,1,1,1,1,0,0,0), which has the desired elimination property to
compute J N Rz, y, 2].

Using our own (somewhat naive) implementation of the Grobner Walk
based on the Groebner package in Maple, we computed the >w greyies basis
for J as in (5.12). As we expect, the elimination ideal is generated by a
single polynomial: J N Rz, y, z] =

(58322%y% — 7292® — 349922y — 14496yxz — 14328272

+ 24500xy? — 233002y + 31252% — 546422 — 3635621y

+ 1640x2° + 44082 + 63456y°x2° + 2875232222

— 201984y° — 165242%y> — 175072y%2% + 42240y*zz — 92672y° 2z
+ 999562%y% + 50016y22 + 90368y% + 471222 + 3200y°2%2

+ 6912y z2% + 13824y°zx + 194402°2xy> + 156602523y + 9722122y?
+ 6750222y — 61696y22°z + 4644yz2® — 37260yz1z2

— 85992y2x2 22 + 55522t — T134x2° + 64464y2°2>

— 5384zyx® + 29602y%x® — 1512° 4 1936

+ 2969615 + 707425y + 183812%2? — 217522t + 4374x2”

+ 112022 — 78442323 — 139264y — 2048y" — 1024y%22

— 512y°2% — 119104y3z? — 210432y*2? + 48896y°2>

— 104224132 + 28944y*2* + 54912y*2? — 20768y + 58322°z°

— 87482822 4 97024y%x> + 58560y 2z + 240128y + 286912y° 2>
+ 10840zyz> + 15522° 2 — 37502x°).
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The computation of the full Grébner basis (including the initial com-
putation of the grevlex Grdbner basis of J) took 43 seconds on a 866MHz
Pentium IIT using the Grobner Walk algorithm described in Theorem (5.9).
Apparently the cones corresponding to the two monomial orders >, >
are very close together in the Grébner fan for J, a happy accident. The
Wyew-initial forms in the second step of the Walk contained a large num-
ber of distinct terms, though. With the “sudden death” strategy discussed
above, the time was reduced to 23 seconds and produced the same poly-
nomial (not a multiple). By way of contrast, a direct computation of the
>w, greviez GrObner basis using the gbasis command of the Groebner pack-
age was terminated after using 20 minutes of CPU time and over 200Mb of
memory. In our experience, in addition to gains in speed, the Grobner Walk
tends also to use much less memory for storing intermediate polynomials
than Buchberger’s algorithm with an elimination order. This means that
even if the Walk takes a long time to complete, it will often execute suc-
cessfully on complicated examples that are not feasible using the Grébner
basis packages of standard computer algebra systems. Similarly encourag-
ing results have been reported from several experimental implementations
of the Grobner Walk.

As of this writing, the Grobner Walk has not been included in the
Grdbner basis packages distributed with general purpose computer algebra
systems such as Maple or Mathematica. An implementation is available
in Magma, however. The CASA Maple package developed at RISC-Linz
(see http://www.risc.uni-linz.ac.at/software/casa/) also contains
a Grobner Walk procedure.

ApDITIONAL EXERCISES FOR §5

Exercise 5. Fix a nonzero weight vector w € (R")*. Show that every
f € k[z1,...,zy] can be written uniquely as a sum of w-homogeneous
polynomials.

Exercise 6. Fix a monomial order > and a nonzero weight vector w €
(R™)*. Also, given an ideal I C k[zy,...,z,], let Cs be the cone in the
Grobner fan of I corresponding to (LT~ (I)) € Mon([).

a. Prove that w is compatible with > if and only if w - & > w - 8 always
implies @ > 2°.

b. Prove that if w is compatible with >, then w € Cs.

c. Use the example of >, forz > y, I = {x+y) C k[z,y] and w = (1,1)
to show that the naive converse to part b is false. (See part d for the
real converse.)

d. Prove that w € C if and only if there is a monomial order >’ such
that Cs: = Cs and w is compatible with >'. Hint: See the proof of part
b of Lemma (5.8).
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Exercise 7. Suppose that J is an ideal generated by w-homogeneous
polynomials. Show that every reduced Grébner basis of I consists of w-
homogeneous polynomials. Hint: This is generalizes the corresponding fact
for homogeneous ideals. See [CLO], Theorem 2 of Chapter 8, §3.

Exercise 8. It is possible to get a slightly more efficient version of the

algorithm described in Theorem (5.9). The idea is to modify (5.2) so that

Ugst 18 allowed to be greater than 1 if the ray from w4 to w; leaves the

cone at a point beyond wy.

a. Modify (5.2) so that it behaves as described above and prove that your
modification behaves as claimed.

b. Modify the algorithm described in Theorem (5.9) in two ways: first,
Wpeyw 18 defined using min{1,u;,s;} and second, the IF statement tests
whether uj,5¢ > 1 or Wy, = Wi. Prove that this modified algorithm
correctly converts G4 to Gy.

c. Show that the modified algorithm, when applied to the ideal I = {(x? —
y,y? — 2z — yz) discussed in the text, requires one less pass through the
main loop than without the modificiation.

Exercise 9. In a typical polynomial implicitization problem, we are
given f; € k[t1,...,tm], ¢ = 1,...,n (the coordinate functions of a
parametrization) and we want to eliminate t1, . .., t,, form the equations
z; = filti,---,tm), i = 1,...,n. To do this, consider the ideal

J = <'Z'1 _fl(tla--wtm)r--axn _fn(t17---7tm))

and compute I = J N k[zy,...,z,] to find the implicit equations of the
image of the parametrization. Explain how the Groébner Walk could be
applied to the generators of J directly to find I without any preliminary
Grobner basis computation. Hint: They are already a Grobner basis with
respect to a suitable monomial order.

Exercise 10. Apply the Grobner Walk method suggested in Exercise 9 to
compute the implicit equation of the parametric curve

z =t
y =t +t
(If you do not have access to an implementation of the Walk, you will need

to perform the steps “manually” as in the example given in the text.) Also
see part b of Exercise 11 in the previous section.



