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Abstract. We show how the theory of affine geometries over the ring Z/〈q−1〉
can be used to understand the properties of toric and generalized toric codes
over Fq. The minimum distance of these codes is strongly tied to the collections
of lines in the finite geometry that contain subsets of the exponent vectors of
the monomials that are evaluated to produce the standard generator matrix
for the code. We argue that this connection is, in fact, even more direct than
the connection with the lattice geometry of those exponent vectors considered
as elements of Z

2 or R
2. This point of view should be useful both as a way

to visualize properties of these codes and as a guide to heuristic searches for
good codes constructed in this fashion. In particular, we will use these ideas
to see a reason why these constructions have been so successful over the field
F8, but less successful in other cases.

1. Introduction

We will consider a particular construction of linear block codes over a finite field
Fq. Mathematically, our codes are simply vector subspaces C ⊂ F

n
q whose elements

serve as a set of codewords for representing information. This sort of encoding
is done to increase the reliability of communication over noisy channels and has
a number of engineering applications. Our standard reference for basic notions
and notation in coding theory is [7]. As usual, n always denotes the block length
and k denotes the vector space dimension of dimFq

C, so that the set of codewords

contains qk elements. The important parameters of a code are n, k and a third
integer d called the minimum Hamming distance. For these linear codes,

d = min
x 6=0∈C

|{i | xi 6= 0}|.

If we fix n, k, the larger the parameter d is, the larger the error detection and error
correction capacity of a code is.

The toric codes studied here are a class of m-dimensional cyclic codes introduced
by J. Hansen in [5], [6]. (The term “toric code” is also used in another context that
has no direct connection with this one.) Hansen uses the geometry of the projective
toric variety corresponding to a polytope P in R

m to describe toric codes, but these
may also be understood in a somewhat more concrete way within the general context
of evaluation, or functional, codes.

Definition 1.1. Let P be the convex hull of a finite set of integer lattice points,
contained in [0, q − 2]m ⊂ R

m and let L = Span{xe : e ∈ P ∩ Z
m} be the Fq-linear

span of the monomials xe in variables x1, . . . , xm corresponding to the lattice points
e in P . We get a linear block code, that we will denote by CP (Fq), as the image
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of the evaluation mapping on the Fq-rational points in the standard m-dimensional
torus over Fq:

ev : L → F
(q−1)m

q

g 7→ (g(p) : p ∈ (F∗
q)

m).

The condition that P ⊂ [0, q − 2]m implies that the xe are linearly independent
as functions on (F∗

q)
m. In terms of generator matrices, this construction can also

be described as follows. Let α be a primitive element for Fq. If f ∈ Z
m is a vector

with 0 ≤ fi ≤ q − 2 for all i, let pf denote the point pf = (αf1 , . . . , αfm) in (F∗
q)

m.
If e = (e1, . . . , em) ∈ P ∩ Z

m, write

(pf )e = (αf1 )e1 · · · (αfm)em = α〈f,e〉.

Then the standard generator matrix for CP (Fq) is the (dimFq
L)× (q − 1)m matrix

G = ((pf )e),

whose rows are indexed by e ∈ P ∩ Z
m, and whose columns are indexed by f or

pf ∈ (F∗
q)

m. We note that if P is the interval [0, ℓ − 1] ⊂ R, then CP (Fq) is simply
the Reed-Solomon code RS(ℓ, q). So toric codes are, in a sense, higher-dimensional
generalizations of Reed-Solomon codes.

In applying these ideas, it has turned out to be worthwhile to generalize this
construction slightly, using arbitrary sets S ⊂ [0, q−2]m ⊂ R

m instead of the whole
set of lattice points in a convex polytope. These codes will be denoted by the
analogous notation CS(Fq). If P = conv(S), then the code CS(Fq) is a subcode
of CP (Fq). In the algebraic geometric language used by Hansen, the CS(Fq) codes
can be defined using incomplete linear systems V ⊂ |OXP

(DP )|, where XP is the
toric variety determined by P and DP is the corresponding divisor class on XP .

The survey [13] covers most of the work on these codes contained in [8], [11],
[14], [15], [16], and [1].

Toric codes or generalized toric codes are not all as good as Reed-Solomon codes
from the coding theory perspective, but there are some very good codes first found
by this construction. For instance, [2] gives a number of codes over F8 found by
this method better than any previously known examples.

In many of the works cited above, the main focus has been on identifying con-
ditions on P or on S that imply results about the minimum distance of the corre-
sponding codes using the geometry of P ∩ Z

m or S as subsets of the integer lattice
Z

m ⊂ R
m. In particular, the role of Minkowski sum decompositions of subpoly-

topes of P and factorizations of the sections of the corresponding line bundle on
the toric surface XP has been studied rather intensively in [11], [16], and [10].

In this note we will describe and exploit a somewhat different point of view. We
relate the properties of the CS(Fq) codes to properties of the images of the sets S
in the finite m-dimensional affine ring geometry over Z/〈q− 1〉, obtained by simply
reading the exponent vectors e above as elements of (Z/〈q−1〉)m. The results here
are, in a way, complementary to those from [10], where we compared the properties
of CS(Fq) and the related code CP (Fq) for P = conv(S) and q sufficiently large.
Here the focus will be on the special properties of certain S for specific q.

We will concentrate mainly on the case m = 2 for simplicity, although the
extension to larger m is essentially immediate. By itself, this amounts mostly to a
relatively simple translation of known algebraic facts into another sort of geometric
language with some unusual properties. However, we will argue that this this
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alternative point of view is, if anything, even more natural and direct than studying
toric codes via properties of polytopes and integer lattice vectors in Z

2. Moreover,
this approach should prove useful both for visualizing how d is determined by the
properties of S and hence for heuristic searches for codes with good d.

We will recall the known properties of these geometries in §2. We will then
apply these properties to the study of generalized toric codes in §3. In particular,
we will see a very concrete explanation for why F8 appears to be a particularly
favorable choice of base field, and for why the construction succeeds so well there,
yet performs relatively poorly over other fields of comparable small size. Finally, in
§4, we will offer some more speculative comments about the potential of this code
construction and an indication of which other finite fields should have properties
analogous to those of F8.

Acknowledgments. This ideas in this long-gestating paper are somewhat indirect
outgrowths of results obtained in undergraduate research projects carried out by
Ryan Schwarz, Alex Simao, and Lauren Buckley at the College of the Holy Cross,
and by Alejandro Carbonara, Juan Murillo and Abner Ortiz at the MSRI-UP 2009
program under the supervision of the author. It is a pleasure to acknowledge their
contributions to the development of the author’s thinking. Computations were done
using procedures originally written by D. Joyner in Magma, a commercial package
available at http://magma.maths.usyd.edu.au/magma/.

2. Finite Ring Geometries

The properties of the finite affine and projective geometries over a finite field are
very well-known and, of course, form the basis for algebraic geometry over finite
fields and many different sorts of applications to coding theory. Perhaps less well-
known to many mathematicians not working in the area is that there is also a quite
well-developed theory of affine and projective coordinate geometries over rings. We
will only need the following relatively simple case discussed in [9] and called affine
Barbilian planes there. These are geometries with more of the “usual properties”
one expects from the geometry of the Euclidean plane than the even more general
structures called Hjelmslev planes.

Let R be a ring with multiplicative identity 1 in which a · b = 1 implies b · a = 1.
Examples include commutative rings with identity as well as various noncommuta-
tive rings such as matrix rings over a field. Let B be a subset of R2 = R × R that
satisfies

(E1) (1, 0), (0, 1) ∈ B,
(E2) If (u, v) ∈ B and r is a unit in R, then r(u, v) = (ru, rv) ∈ B,

(E3) Every (u, v) ∈ B can be completed to an invertible 2 × 2 matrix

(

u v
s t

)

with (s, t) ∈ B,

(E4) If

(

u v
s t

)

is an invertible 2× 2 matrix with (u, v), (s, t) ∈ B, then (u, v) +

ℓ(s, t) ∈ B for all ℓ ∈ R.

It is easy to see that if (u, v) ∈ B there must be s, t ∈ R such that su+tv = 1 and
this shows that in the cases we will consider, there is only one choice for B, namely
the set of all (u, v) appearing as rows in 2× 2 invertible matrices with entries in R.
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From now on, B will refer to this set; we will not include any indication of the ring
R in the notation, though, since that should always be clear from the context.

Then one can define a geometric structure

G = (P ,L, 6 ◦, ‖)

associated to R as follows:

• P , called the set of points, is simply R2.
• The subsets of P of the form

(a, b) + R(u, v) = {(a + ℓu, b + ℓv) | ℓ ∈ R}

with (u, v) ∈ B are called lines and L is the collection of all such lines.
• Two points (a, b) and (c, d) are said to be non-neighbors, written

(a, b) 6 ◦ (c, d),

if (a − c, b − d) ∈ B. If this does not hold, we write (a, b) ◦ (c, d) and say
that the two points are neighbors.

• Two lines ℓ1 = (a, b)+R(u, v) and ℓ2 = (c, d)+R(s, t) are said to be parallel
if and only if R(u, v) = R(s, t). We write ℓ1‖ℓ2 if this is true. Parallelism
is an equivalence relation on the set L.

For simplicity, we will call G the affine plane over R.
The lines in the affine plane G have a familiar-looking parametric form and the

points on a line are in one-to-one correspondence with the elements of R because
it is required that (u, v) ∈ B. Two non-neighbor points are contained in a unique
line and parallel lines either coincide or are disjoint. But it is also possible for two
distinct neighbor points to be contained in more than one line, and similarly, it is
possible for two non-parallel lines to intersect in more than one point.

The exact properties of the geometries obtained by this construction are captured
by the list of six axioms from [9] part I, defining the affine Barbilian planes. In
addition to the properties already mentioned, there is a nice analog of the Playfair
form of the Euclidean Parallel Postulate that holds here. We will not list all of
these properties because we will not need to make use of them in the following.

On the other hand, [9] part II also contains a number of results characterizing
special properties of these ring geometries corresponding to some standard ring-
theoretic properties of R. For instance, we will need the following statements.

Theorem 2.1 ([9], part II). Let R be a ring with identity with the property that
a · b = 1 implies b · a = 1 and let G be the corresponding affine plane over R. Then

(1) The geometry satisfies the analog of Pappus’s theorem (on triples of points
on two distinct lines) if and only if R is commutative

(2) The neighbor relation on the set of points is transitive if and only if R is a
local ring and B is the set of pairs (u, v) where at least one of u, v is a unit
in R.

(3) There is at most one line containing any pair of distinct points if and only
if R has no zero divisors.

(4) The following are equivalent:
(a) Every pair of distinct points on a line are non-neighbors.
(b) Every pair of distinct points are non-neighbors.
(c) R is a field (not necessarily commutative).
(d) The affine plane satisfies the analog of Desargues’ theorem.
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We will want to make use of this construction in the particular case R = Z/〈r〉 for
some integer r > 1. From Theorem 2.1, we easily derive the following statements.

Corollary 2.2. Let R = Z/〈r〉 and G be the affine plane over R. In Theorem 2.1,
in this case:

(a) The analog of Pappus’s theorem in (1) always holds.
(b) The statements in part (2) hold if and only if r is a prime power.
(c) The statements in parts (3) and (4) hold if and only if r is prime and G is

the affine plane over a field.

Example 2.3. Consider the affine plane over R = Z/〈8〉. We will represent ele-
ments of R by the smallest nonnegative elements of the corresponding congruence
classes. The set B consists of vectors (u, v) where either u or v is a unit mod 8,
hence equals 1, 3, 5, or 7. Then for instance P = (0, 0) and Q = (1, 4) satisfy P 6 ◦ Q
since P − Q = (7, 4) ∈ B. P and Q are contained in exactly one line:

(0, 0) + R(1, 4) = {(0, 0), (1, 4), (2, 0), (3, 4), (4, 0), (5, 4), (6, 0), (7, 4)}.

From this list of points, we can see already that the affine plane over R has some
unusual properties. For example, note that (2, 0) would also be on the line

(0, 0) + R(1, 0).

So (0, 0) ◦ (2, 0) and these are examples of neighbors lying on 2 distinct lines.
Similarly the points (0, 0) ◦ (4, 0) are neighbors and they actually both lie on four
distinct lines:

(0, 0) + R(1, 0), (0, 0) + R(1, 2), (0, 0) + R(1, 4), (0, 0) + R(1, 6).

The set of all neighbors of (0, 0) is

N = {(a, b) | a, b ∈ {0, 2, 4, 6}}.

The neighbor relation is transitive in this case since R is a local ring with unique
maximal ideal 〈2〉R (as in part (2) of Theorem 2.1). ♦

The properties seen in this example generalize immediately.

Proposition 2.4. Let G be the affine plane over Z/〈r〉 and let (a, b) ◦ (c, d) be
distinct neighboring points. The number of distinct lines containing both points
is equal to r/o((a − c, b − d)), where o((a − c, b − d)) is the order of the element
(a − c, b − d) in the additive group R2.

Proof. Without loss of generality, we reduce to the case (c, d) = (0, 0). Let (a, b)
be any point contained in a line R(s, t) and change coordinates by an invertible
2 × 2 matrix with entries in R to map (s, t) to (1, 0), hence mapping (a, b) to
ℓ(1, 0) = (ℓ, 0) for some ℓ ∈ R. Then for each line containing (0, 0) and (ℓ, 0), there
is a direction vector (u, v) ∈ B and ℓ′ ∈ R such that

(2.1) (ℓ, 0) = ℓ′(u, v).

Note that (2.1) implies v cannot be a unit in R. Hence u must be a unit (since the
vector (u, v) ∈ B by definition) and we can replace (u, v) by another direction vector
for the same line having the form (1, v′). Then there must be an equation similar
to (2.1) with (u, v) replaced by (1, v′). Then the scalar multiple ℓ′(1, v′) giving
(ℓ, 0) must have ℓ′ = ℓ and ℓv′ = 0. Moreover, there is a one-to-one correspondence
between the lines containing (0, 0) and (ℓ, 0) and solutions of the equation ℓv′ = 0



6 JOHN LITTLE

in R. The number of solutions of this equation is equal to the index of the subgroup
〈ℓ〉 ⊆ R, which is equal to r/o(ℓ). This establishes the claim. �

3. Ring Geometries and Generalized Toric Codes

We will now consider how the finite ring geometries introduced in the previous
section relate to toric codes. We again take m = 2 for simplicity although everything
extends without difficulty to larger m as well. The first observation is that since
we are evaluating the monomials xe at points pf in (F∗

q)
2 (as in the introduction),

the fact that primitive elements α for Fq satsify αq−1 = 1 implies that

e ≡ e′ mod q − 1 ⇒ (pf )e = (pf )e′

.

Hence, in a sense, it is probably even more natural to consider the exponent
vectors e used in the evaluation mapping producing a toric surface code or one of
the generalized toric codes CS(Fq) with m = 2 as elements of the affine plane G
over Z/〈q − 1〉 rather than as vectors in Z

2 or R
2. Our first result is a variation

on the fact noted in Theorem 3.3 of [12] that lattice equivalent polytopes give
monomially equivalent toric codes, giving some additional evidence for this claim.
This statement appears in a technical report written by three of my students at the
2009 MSRI-UP undergraduate summer research program. We reproduce the proof
here for the convenience of the reader.

Theorem 3.1 ([3], Theorem 1). Let M be an invertible 2 × 2 matrix with entries
in Z/〈q − 1〉, v be a fixed column vector with entries in Z/〈q − 1〉, and consider the
affine mapping

T : (Z/〈q − 1〉)2 → (Z/〈q − 1〉)2

w 7→ Mw + v

Let S1 and S2 be subsets of (Z/〈q−1〉)2 such that S2 = T (S1). Then the generalized
toric codes CS1

(Fq) and CS2
(Fq) are monomially equivalent.

Proof. The proof is essentially the same as that of Theorem 3.3 from [12]. The
component of the vector ev(xe) corresponding to e ∈ S1 and pf ∈ (F∗

q)
2 is α〈e,f〉.

Similarly, evaluating xMe+v , where Me + v ∈ S2, we obtain

α〈Me+v,f〉 = α〈v,f〉 · α〈e,Mtf〉.

Because it is assumed invertible, M defines a permutation of (Z/〈q−1〉)2, and sim-
ilarly M t induces a permutation of (F∗

q)
2. Moreover, the translation vector induces

different constant multiples in each component of the evaluation of a monomial.
Hence the CS2

(Fq) code is monomially equivalent to the CS1
(Fq) code. �

The transformations T described here form a group under composition, known
as the affine general linear group over Z/〈q−1〉 and denoted by AGL(2, Z/〈q−1〉).
If S2 = T (S1) for some such T , the sets are said to be AGL(2, Z/〈q−1〉)-equivalent.
Because det(M) can be any unit in Z/〈q − 1〉, not just ±1 as for invertible integer
affine transformations, we tend to obtain somewhat larger equivalence classes here
than when we consider lattice equivalence classes of sets S. But the generalized toric
codes for all S in one of these equivalence classes are equivalent from the coding
theory perspective – they have the same total weight enumerators, for instance.

The following simple algebraic fact will play a key role in relating properties
of toric codes to the properties of the affine plane over Z/〈q − 1〉. The ring
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Fq[x, y]/〈xq−1 − 1, yq−1 − 1〉 is precisely the coordinate ring of the torus (F∗
q)

2

over Fq. We will show that the geometry of the affine plane over Z/〈q − 1〉 and the
algebra of polynomial functions on the on the torus are closely connected. We will
now abandon the multiindex notation and write out monomials in two variables
explicitly.

Theorem 3.2. Let G be the affine plane over R = Z/〈q−1〉 and let (0, 0)◦ (a, b) be
neighbors. Then the binomial xayb−1 factors in Fq[x, y]/〈xq−1−1, yq−1−1〉 into a
product of N distinct factors, where N is the number of distinct lines in G containing
both (0, 0) and (a, b), or equivalently (by Proposition 2.4), N = (q − 1)/o((a, b)),
where o((a, b)) is the order of the element (a, b) in the additive group R2.

Proof. The integer N is a factor of q − 1. Hence F
∗
q contains N distinct Nth roots

of unity and uN − 1 factors completely into linear factors in Fq[u]. But then the
same will be true for xayb − 1 since (a, b) = N(u, v) for some vector (u, v) ∈ B. If
α is a primitive element for Fq, the factorization can be written explicitly as

(3.1) xayb − 1 =
∏

j|(αj)N=1

(xuyv − αj).

This establishes the theorem. �

We are now ready to see some first consequences for toric codes.

Corollary 3.3. Suppose the set S used to produce the generalized toric code CS(Fq)
contains (0, 0) and (a, b) as in the statement of Theorem 3.2 (or more generally any
two elements of (Z/〈q − 1〉)2 that differ by an element of order (q − 1)/N). Then
the minimum distance of CS(Fq) satisfies

d(CS(Fq)) ≤ (q − 1)2 − N(q − 1).

We assume nothing about other points on the lines containing (0, 0) and (a, b).
Note that this does not contradict the statement of Proposition 3.4 of [12] because
that article considers only toric codes from polytopes and we are considering gen-
eralized toric codes here. The analogous pairs of points here, yielding codes where
the bound has N = 1, are those pairs differing by an element of order q − 1 in
(Z/〈q − 1〉)2, or equivalently an element of the set B.

Proof. First, if S contains (0, 0) and (a, b), then the Fq-span of the monomials
corresponding to S contains all linear combinations of 1 and xayb. Therefore, from
(3.1), we obtain a codeword containing zero entries at positions corresponding to
each of the (x, y) ∈ (F∗

q)
2 with

xuyv − αj = 0

as αj runs through the Nth roots of unity in F
∗
q . There are exactly q − 1 such

points for each j. Moreover the sets of zeroes are clearly pairwise disjoint. Hence
that codeword has weight (q − 1)2 − N(q − 1), and we have an upper bound for
d(CS(Fq)) as claimed. The more general case given in parentheses in the statement
of the Corollary follows from this. If xayb and xcyd are in S and (c− a, d− b) is an
element of order (q − 1)/N in (Z/〈q − 1〉)2, then

xcyd − xayb = xayb(xc−ayd−b − 1).

The monomial xayb is nonzero at all points in (F∗
q)

2 and we proceed as before with
the other factor. �
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A direct consequence of this is the following statement about a related configu-
ration of points.

Corollary 3.4. Suppose the S used to produce the generalized toric code CS(Fq)
contains the vertices of a “parallelogram” – that is four points of the form

(0, 0), (a, b), (c, d), (a + c, b + d),

where the sum is taken in (Z/〈q− 1〉)2 (or more generally something obtained from
this by translating by a fixed vector in (Z/〈q−1〉)2). Assume that (a, b) = N1(a

′, b′)
for (a′, b′) ∈ B has order (q − 1)/N1, and (c, d) = N2(c

′, d′) for (c′, d′) ∈ B has
order (q − 1)/N2 in (Z/〈q − 1〉)2. If (a′, b′) and (c′, d′) generate the additive group
(Z/〈q − 1〉)2, then

d(CS(Fq)) ≤ (q − 1)2 − (N1 + N2)(q − 1) + N1N2.

Proof. Among the linear combinations of the monomials corresponding to the points
in S are combinations that factor as

(xayb − 1)(xcyb − 1).

Because of the hypothesis on (a′, b′) and (c′, d′) the curves xa′

yb′ − αj = 0 and

xc′yd′

− αk = 0 always intersect in a single point in (F∗
q)

2. Applying Theorem 3.2
and the proof of Corollary 3.3, this polynomial has (N1 +N2)(q−1)−N1N2 zeroes
in (F∗

q)
2. �

We leave it to the reader to formulate and prove a result describing the possi-
bilities that can occur when (a′, b′) and (c′, d′) fail to generate the additive group
(Z/〈q − 1〉)2. In Example 3.8 below, we will see one example of what can happen.

Example 3.5. Consider generalized toric codes CS(F9). Here q = 9 so q−1 = 8 and
the relevant affine plane is the one whose properties were studied in Example 2.3.
From Corollary 3.3, we obtain, for instance that if S contains (0, 0) and (4, 0) (or
(1, 0) and (5, 0), etc.) then

d(CS(F9)) ≤ 64 − 4 · 8 = 32.

From [4], the best possible d for a code with n = 64 and k = 2 over F9 has d = 57.
Hence such CS(F9) can be far from optimal. Similarly if S contains any two points
differing by an element of order N = 2 in (Z/〈8〉)2, then

d(CS(F9)) ≤ 64 − 2 · 8 = 48.

We can summarize the pattern here by saying that the presence of neighboring
points in S tends to reduce d(CS(Fq)) directly in proportion to the number of
distinct lines through the neighbors. ♦

By part (3) of Theorem 2.1, there will be analogous more or less “bad” configu-
rations of pairs or other small numbers of points that must be avoided in S in order
to produce generalized toric codes over Fq with good minimum distance. Here are
several examples illustrating these claims.

Example 3.6. In [10] we discussed several cases where, even though S0 contains
“gaps” (that is, if P = conv(S0), then some points of P ∩ Z

2 are not contained
in S0) the generalized code CS0

(Fq) behaves like a toric code CP (Fq) where P
contains a whole line segment and there are linear combinations of the corre-
sponding monomials that factor completely. The same kind of thing can now
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be recognized and predicted in many additional examples. For instance consider
the set S0 = {(0, 0), (3, 1), (1, 3)} with q = 9. Even though these points are not
collinear as elements of Z

2, they are collinear in the affine plane over Z/〈8〉 because
(1, 3) = 3·(1, 3). Moreover, if βi are any distinct elements of F9 with β1+β2+β3 = 0,
then

xy3 + (β1β2 + β1β3 + β2β3)x
3y + β1β2β3

factors as
(x3y + β1)(x

3y + β2)(x
3y + β3)

in F9[x, y]/〈x8 − 1, y8 − 1〉. This implies that if S contains any set AGL(2, Z/〈8〉)-
equivalent to S0, then generalized toric code satisfies

d(CS(F9)) ≤ 64 − 3 · 8 = 40.

The behavior seen in cases like this one, and the similar factorization over F8 from
Example 5.6 of [11], becomes much less mysterious with the viewpoint provided by
the finite geometry. ♦

In the following examples, we will consider codes over F9 and we will use a
primitive element α for this field given as a root of u2 + u + 2 = 0.

Example 3.7. Consider S0 = {(1, 0), (0, 1), (6, 3)} in the affine plane over Z/〈8〉.
These points are not collinear, but replacing x by x9 and y by y9, we obtain a
factorization of a linear combination of x9, y9, x6y3 as follows:

x9 + y9 + x6y3 = (x + αy)3(x + α3y)3(x + α4y)3

So if S contains any configuration AGL(2, Z/〈8〉)-equivalent to S0, then

d(CS(F9)) ≤ 64 − 3 · 8 = 40.

Whenever q = pr for r > 1, the Frobenius automorphism of the field Fq will produce
analogous unexpected behavior. ♦

Moreover, those “bad” configurations depend strongly on q because the geome-
tries of (Z/〈q − 1〉)2 also depend strongly on q, not just on the locations of the
points from S in Z

2 or R
2.

Example 3.8. Consider the “trapezoid” S0 = {(0, 0), (3, 0), (1, 4), (2, 4)}, viewed as
a subset of the affine planes over Z/〈6〉, Z/〈7〉, and Z/〈8〉 in turn. The corresponding
toric codes CS0

(Fq) have parameters as follows:

CS0
(F7) [36, 4, 18]

CS0
(F8) [49, 4, 36]

CS0
(F9) [64, 4, 40].

As a result, the presence of S0 (or, by Theorem 3.1, any other configuration S1

obtained from S0 by an invertible affine transformation of the corresponding plane)
in a set S imposes different “penalties” n− d depending on q. The penalty is much
larger for q = 7 or q = 9 than it is for q = 8.

The explanation for this behavior comes from the finite geometries. In the geom-
etry over Z/〈6〉, the points (0, 0) and (3, 0) are neighbors contained in three distinct
lines. We get d(CS0

(F7)) ≤ 36 − 3 · 6 = 18 from Corollary 3.3.
In the plane over Z/〈8〉, on the other hand, the situation is more subtle. First,

we note that in (Z/〈8〉)2, the configuration S0 is actually also a “parallelogram.”
This is true since (2, 4)− (0, 0) = (2, 4) and (3, 0)− (1, 4) = (2, 4). But we also have
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(2, 4) = 2(1, 2) and the vectors (1, 4) = (1, 4) − (0, 0) and (1, 2) do not generate all
of (Z/〈8〉)2. As a result, the statement of Theorem 3.4 does not apply and while
the bound is still true, it is not sharp. We can understand what is happening in
this example algebraically by working in F9[x, y]/〈x8 − 1, y8 − 1〉, the coordinate
ring of the torus (F∗

9)
2. One minimum-weight word in the CS(F9) code comes from

evaluating

α7 + α2x3 + α6xy4 + α3x2y4 ≡ α2(y2 + x)(α4y2 + x)(αy4 + x)

(recall that y8 ≡ 1). This is a maximally factorizable polynomial in the span of
1, x3, xy4, x2y4. The number of zeroes in (F∗

9)
2 turns out to be 3 · 8 = 24 in this

case, since the curves

y2 + x = 0, 2y2 + x = 0, αy4 + x = 0

defined by the factors do not intersect at F9-rational points in the torus. ♦

We believe that the lesson of examples like these is that toric codes over fields
such as F7 and F9 are not automatically bad, but that there are certain configu-
rations of points special to the field Fq that must be avoided in S in order to find
codes CS(Fq) with good d. Here is an example where this approach was followed
to try to find a good code.

Example 3.9. The following S giving a nearly optimal CS(F9) code with pa-
rameters [64, 8, 45] was found by a randomized heuristic search at the MSRI-UP
2009 undergraduate research program by then-students Alejandro Carbonara, Juan
Murillo, and Abner Ortiz:

S = {(0, 4), (1, 1), (2, 0), (2, 3), (2, 5), (3, 7), (5, 2), (7, 4)}.

According to [4], the best known d for this n and k over F9 is d = 46. It is not
difficult to check that all but four of the pairwise difference vectors (a, b) − (c, d)
for (a, b), (c, d) ∈ S are contained in the set B considered here (for the field F9).
Moreover the four that are not in B, such as (2, 0)−(0, 4) ≡ (2, 4), are all elements of
order 4 in (Z/〈8〉)2. So the upper bound d ≤ 48 from Corollary 3.3 or Example 3.5
applies. This is a case where taking one pair of the points in S gives a code with
d = 48, but then adding six more points decreases d by only an additional 3.

Another observation is that the set of differences (a, b)− (c, d) contains only two
pairs of equal vectors (there are 26 different vectors in the set of differences). The
two pairs of equal vectors consist of vectors in B. Hence there are two “parallelo-
grams” contained in S, and Corollary 3.4 applies with N1 = N2 = 1. This gives a
less tight upper bound of d ≤ (9 − 1)2 − 2(9 − 1) + 1 = 49. ♦

Computations done by my student Lauren Buckley at Holy Cross in 2014 show
that d = 45 is optimal for generalized toric codes with n = 64 and k = 8 over F9.
But the method requires a detailed (and tedious) case-by-case analysis and we will
not attempt to present the details here. The idea was simply to enumerate all the
AGL(2, Z/〈8〉)-equivalence classes of base sets S0 with |S0| = 4, and then consider
all possible ways to “build up” to k = 8 by adding 4 additional points to one S0 in
each class. As k increased, it quickly became impossible to avoid some sets dropping
d to 45 or less. The examples presented above were all used to recognize when this
happened. Needless to say, though, we would like to have a better argument to
show d ≤ 45.
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4. Final Comments

We will conclude this note by making some further observations regarding the
potential of the generalized toric code construction for producing really good codes
(say better than those found by other methods and recorded in the database [4]).
As we mentioned previously, this construction has been most successful over F8, as
shown for example in the new codes found in [2]. The underlying reason for this
should be somewhat clear by now – we believe that this is simply a reflection of the
fact that the underlying geometry in this case comes from the field Z/〈8− 1〉 ≃ F7,
rather than from a ring with zero divisors, hence neighboring points in the affine
plane. All of the properties in (4) of Theorem 2.1 hold in this case, so there are
many fewer “bad configurations” to avoid in searches for good codes. While there
are isolated examples like the one in Example 3.9 over fields Fq for which Z/〈q− 1〉
is not also a field, and even a few others where optimal codes have been obtained
as generalized toric codes, we believe that these cases will be much rarer and more
difficult to find. The best next case to look at will probably be codes over F32 and
more generally the other cases where p is a Mersenne prime and p + 1 = 2r. But of
course these cases are relatively rare and they lead to large fields where virtually
nothing is known yet about optimal codes.
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