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I.

Suppose that a geometric construction problem can be solved by intersections of straight
lines and circles. If one joins the points obtained in this way with the centers of the circles
and with the points that determine the lines, one will form a sequence of triangles whose
sides can be calculated by the formulas of trigonometry. These formulas are algebraic
equations that contain the side lengths only to the first or the second degree. So the
principal unknown of the problem will be obtained by solving a series of equations of the
second degree whose coefficients are rational functions of the given information and of
the roots of the preceding equations. Because of this, in order to recognize whether the
construction in a geometry problem can be carried out with the straightedge and compass,
it is necessary to determine whether it is possible to make the roots of the equation to which
the construction leads depend on roots of a composite system of second order equations
as we have just indicated. We will treat only the case where the equation of the problem
is algebraic.

II.

Consider a sequence of equations:

(A)

x2
1 + Ax1 + B = 0

x2
2 + A1x2 + B1 = 0

...

x2
n + An−1xn + Bn−1 = 0,

in which the A, B represent rational functions of given quantities p, q, r, . . ., A1, B1 repre-
sent rational functions of x1, p, q, r, . . ., and generally Am, Bm represent rational functions
of xm, xm−1, . . . , x, p, q, r, . . .. Every rational function of xm, such as Am or Bm takes the
form

Cm−1xm + Dm−1

Em−1xm + Fm−1

if one eliminates powers of xm higher than the first by means of the equation x2
m +

Am−1xm + Bm−1 = 0, while designating by Cm−1, Dm−1, Em−1, Fm−1 the resulting ra-
tional functions of xm−1, . . . , x, p, q, r, . . .. This [i.e. the preceding rational function with
numerator and denominator linear in xm] can also be put into the form A′

m−1xm + B′

m−1
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by multiplying the numerator and the denominator in
Cm−1xm+Dm−1

Em−1xm+Fm−1

by −Em−1(Am−1 +

Dm) + Fm−1.
Let us multiply together the two values that the first term in the equations (A) takes

when one substitutes successively in the place of xn−1 in An−1, Bn−1 the two roots of the
preceding equation. We will have a polynomial of degree 4 in xn whose coefficients are
expressed as rational functions in xn−1, . . . , x, p, q, . . .. If we replace xn−2 in the same way
successively in this polynomial by the two roots of the corresponding equation, we will
obtain two results of which the product will be a polynomial in xn of degree 8 = 23, with
coefficients rational in xn−3, . . . , x, p, q, . . .. Continuing in the same way, we will arrive at
a polynomial in xs of degree 2s whose coefficients will be rational functions of p, q, r, . . ..
Setting this polynomial equal to zero will give a final equation f(xn) = 0 or f(x) = 0 which
includes all the solutions of the question. One can always suppose that, before doing this
calculation, one has reduced the system (A) to the smallest possible number of equations.
(We claim that) an arbitrary element of the system (A), say x2

m+1 + Amxm+1 + Bm = 0
cannot be satisfied by any rational function of the given quantities and the the roots of the
preceding equations. (Proof:) For if that were true, the result of the substitution would
be a rational function of xm, . . . , x, p, q, . . . that could be put in the form A′

m−1xm +B′

m−1

and one would have A′

m−1xm + B′

m−1 = 0. One would take from this equation a rational
value for xm, which substituted into the second degree equation for xm would lead to a
result of the form A′

m−2xm−1 + B′

m−2 = 0. Continuing in the same way, one would arrive
at A′x1 + B′ = 0, that is that the equation x2

1 + Ax1 + B = 0 would have solutions that
were rational functions of p, q, . . .. The system (A) could then be replaced by two systems
of n−1 equations of the second degree, independent of each other, which is a contradiction.
If one of the intermediate relations A′

m−2xm−1 + B′

m−2 = 0, for instance, were identically
satisfied, the two solutions of the equation x2

m−1 + Amxm−1 + Bm = 0 would be rational
functions of xm−1, . . . , x for all the values that these quantities could hold, in such a way
that the one could suppress the equation in xm and relace the root successively by the two
values in the following equations. This would again lead the system (A) to two systems of
n − 1 equations.

III.

We claim:

Theorem. The equation of degree 2s, f(x) = 0, that gives all the solutions of a problem
that can be solved by means of n equations of the second degree, is necessarily irreducible.

That is to say that f cannot have any roots in common with an equation of smaller
degree whose coefficients are rational functions in p, q, . . ..

(Proof:) Suppose in fact that an equation F (x) = 0, with rational coefficients, is
solved by a root of the equation x2

n + An−1xn + Bn−1 = 0, where we attribute suitable
values to xn−1, . . . , x1. The rational function F (xn) of the root of this last equation can
be brought to the form A′

n−1xn +B′

n−1, where A′

n−1, B
′

n−1 designate rational function sof
xn−1, . . . , x1, p, q, . . .. In the same way, A′

n−1 and B′

n−1 can both be brought to the form
A′

n−1xn−1 + B′

n−2, and so forth. One will arrive this way at A′

1x2 + B′

1 where A′

1 and
B′

1 can be put in the form A′x + B′ where A′ and B′ are rational functions of the givens
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p, q, . . .. Since F (xn) = 0 for one of the values of xn, one will have A′

n−1xn + B′

n−1 = 0
and it is necessarily true that A′

n−1 and B′

n−1 are zero separately. Otherwise, the equation

x2
n + An−1xn + Bn−1 = 0 would be solved by xn = −

B′

n−1

A′

n−1

, which is a rational function

of xn−1, . . . , x1, p, q. This is impossible, however. Similarly, since A′

n−1 = B′

n−1 = 0, the
same must be true of A′

n−2 and B′

n−2. And similarly, in turn all these expressions down
to A′

1 and B′

1 which must be zero because they contain only the given quantities. But A′

1

and B′

1, which also take the form A′x1 + B′ when one substitutes for x1 each of the roots
of the equation x2

1 + Ax1 + B = 0, will vanish for these two values of x1. Similarly, the
coefficients A′

2 and B′

2 can be put in the form A′

1x2 + B′

1, taking for x2 either one of the
roots of the equation x2

2 + A1x2 + B1 = 0, corresponding to each of the values of x1. And
hence they will vanish for the four values of x2 and the two values of x1 that result from
the combination of the first two equations in (A). One can show similarly that A′

3 and
B′

3 will be zero when we substitute for x3 any of the 8 values taken from the first three
equations in (A), together with the corresponding values of x2 and x1. Continuing in this
way, one will conclude that F (xn) will vanish for all 2n values of xn coming from the whole
system (A), or for the 2n solutions of f(x) = 0. Thus an equation F (x) = 0 with rational
coefficients cannot admit one root of f(x) = 0 as a solution without having all the roots
of that equation as solutions. Hence the equation f(x) = 0 is irreducible.

IV.

It results immediately from the preceding theorem that any problem that leads to
an irreducible equation whose degree is not a power of 2 cannot be solved using only
the straightedge and compass. Thus the duplication of the cube, which depends on the
solution of the equation x3

−2a3 = 0, always irreducible (translator’s note: i.e. irreducible
for all values of a) cannot be obtained by elementary geometry. The problem of the
two mean proportionals, which leads to an equation x3

− a2b = 0, is in the same case
whenever the ratio of b and a is not a cube. The trisection of the angle leads to the
equation x3

−
3

4
x + 1

4
a = 0. This equation is irreducible if it has no roots that are rational

functions of a, and this is the case if a is algebraic. Thus the problem cannot be solved in
general using straightedge and compass. It seems to us that it has not before been shown
rigorously that these problems, so celebrated among the ancients, cannot be solved using
the geometric constructions they were particularly attached to.

The division of the circumference of a circle into equal parts can always be reduced
to the solution of the equation xm

− 1 = 0, in which m is prime or a power of a prime
number. When m is prime, the equation xm

−1

x−1
is irreducible, as M. Gauss proved in his

Disquisitiones Arithmeticae, section VII. Thus the division cannot be made by geometric
constructions unless m − 1 = 2s. When m is of the form aα, one can show, by slightly
modifying M. Gauss’s proof that the dation of degree (a − 1)aα−1, obtained by setting

xa
α

−1

xa
α−1

−1
equal to zero is irreducible. So it would be necessary for (a− 1)aα−1 to be of the

form 2s at the same time that a−1 had that form, which is impossible unless a = 2. Thus,

Theorem. The division of the circumference of a circle into N (equal) parts can only be
accomplished with straightedge and compass when the prime factors of N different from
2 are of the form 2s + 1, and if they enter only to the first power in this number.
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This principle is announced by M. Gauss at the end of his work, but he did not give
a proof.

If one poses x = k + A′ m
′
√

a′ + A′′ m
′′
√

a′′ + · · ·, where m′, m′′, etc. are powers of 2 and
k, A′, A′′, a′, a′′, . . . are commensurable numbers, the value of x can be constructed with
straight lines and circles, in such a way that x cannot be a root of an irreducible equation
of degree m that is not a power of 2. For example, one cannot have x = A m

√
a if ( m

√
a)p

if p < m. One can show easily that x cannot take these values unless m is a power of
2. We find in this way many particular cases of the theorems that we have established
elsewhere.(*) [footnote: (*) Journal de l’École Polytechnique, Cahier XXVI.]

V.

Let us suppose that a problem has led to an equation of degree 2s, F (x) = 0 and that
we are sure that this equation is irreducible. It is now a matter of recognizing whether the
equation can be obtained by means of a series of equations of the second degree. Let us
reconsider the equations (A):

(A)

x2
1 + Ax1 + B = 0

x2
2 + A1x2 + B1 = 0

...

x2
n + An−1xn + Bn−1 = 0.

It is necessary to construct the equation f(x) = 0 with rational coefficients that gives
all the values of xn and to show that it is the same as the given equation F (x) = 0.
To make this calculation, one remarks that An−1 and Bn−1 can be taken to the form
an−1xn−1 +a′

n−1 and bn−1xn−1 +b′n−1 in such a way that the elimination of xn−1 between
the last two equations in (A) is immediate. This gives an equation of degree 4 in xn. One
will replace in that equation an−1 by a′′

n−1xn−2 + a′′′

n−1, a′

n−1 by aiv
n−1xn−2 + av

n−1, bn−1

by b′′n−1xn−2 + b′′′n−1, and b′n−1 by biv
n−1xn−2 + bv

n−1 and An−2, Bn−2 by an−2xn−2 + a′

n−2,
bn−2xn−2 + b′n−2. Next one eliminates xn−2 between the equation of degree 4 already
obtained and the equation x2

n−2 + An−3xn−2 + Bn−3 = 0, and similarly for the next
equations. The last terms of the series an−1, a

′

n−1, a
′′

n−1, . . . and bn−1, b
′

n−1, b
′′

n−1, . . . must
be rational functions of the coefficients of F (x) = 0. If one can assign them rational values
that satisfy the conditions obtained by identifying them [translator’s note: I think this
means: by setting f(x) and F (x) equal], one will reproduce the equations (A) of which
the whole system is equivalent to F (x) = 0. If the conditions cannot be verified by giving
rational values to the indeterminates introduced, the problem cannot be reduced to the
second degree.

One can simplify this procedure. Supposing that the roots of each of the equations
in (A) give the last term in the next one. Thus one can take Bn−1 for the unknown in

the next-to-last equation since Bn−1 = bn−1xn−1 + b′n−1, and hence xn−1 =
Bn−1−b′

n−1

bn−1

.

In this way, the eliminations are done more rapidly and one introduces four undetermined
quantities in the equation of degree 4 that results from the first elimination, eight in the
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equation of degree 8, and so on, [together with] the conditions obtained in identifying [f(x)
and F (x)]. But one take away in advance the case where one of the quantities such as
bn−1 is zero, and it is necessary to study this case separately.

Suppose, for example, that the equation [i.e. F (x)] is x4+px2+qx+r = 0. Let us take
next the equations of degree 2 in the form x2

1 +Ax1 +B = 0, and x2 +(ax1 +a′)x+x1 = 0.
In eliminating x1 and identifying [i.e. setting the resulting equation in x equal to F (x)
above], one will have:

2a1 − aA = 0, (a′)2 − Aaa′
− A + a2B = p, 2aB − a′A = q, B = r

from which we get

B = r, a =
2q

4r − A2
, a′ =

Aq

4r − A2
, A3 + pA2

− 4rA + q2
− 4rp = 0.

Since B, a, a′ are expressed rationally in terms of A, p, q, r, it is necessary and sufficient
that the equation of degree 3 in A has a rational function of the givens as a root. This is
always true if q = 0, since whatever p, r are, A = −p satisfes this last equation.

In taking x1 as the last term in the second equation of degree 2, one has excluded the
case where this term is independent of the root of the first equation. But in treating that
case directly, one finds no solution of the question which is not included in the equations
above.

Thus, by a more or less long calculation, one will always be able to see whether a
given problem is susceptible of being solved by means of a series of equations of degree 2,
provided that one can recognize whether an equation can be solved by a rational function
of the givens, and whether the equation is irreducible. An equation of degree n will be
irreducible when in searching the divisors of its first term of degrees 1, 2, . . . , n

2
, one finds

no solutions whose coefficients are rational functions of the given quantities.
The question can thus always be reduced to determining whether equations F (x) = 0

in one variable have solutions of this kind. For that, there are several cases to consider.
1o If the coefficients depend only on given numbers that are integers or fractions, it will
suffice to apply the method of commensurable roots [translator’s note: I think this means
what we would call the “rational roots test” for polynomials.] 2o It can happen that the
givens represented by the letters p, q, r can take infinitely many values, while the conditions
continue to hold, as for example, when they [come from] several lines chosen arbitrarily [in
the corresponding geometric construction]. Then after having taken the equation F (x) = 0
to a form such that the coefficients are entire functions [i.e. polynomials] in p, q, r, . . ., and
such that the leading coefficient is 1 [i.e. “monic polynomials”], one will replace x by
ampm +am−1p

m−1 + · · ·+a0 [translator’s note: an apparent typo corrected here], and one
will set the coefficients of the various powers of p in the result equal to zero. The resulting
equations in am, am−1, . . . [translator’s note: another apparent typo fixed here] will be
treated as equations in x. That is to say that in them, one will replace these quantities by
entire functions of q, and so forth. Eventually, when all these letters have been exhausted,
one will arrive at numerical equations, which will return us to the first case. 3o When the
givens are irrational numbers, they must be roots of algebraic equations and these can be
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assumed to be irreducible. In this case, if one replaces x by ampm + · · ·+ a0 in F (x) = 0,
the first term in the equation in p so obtained must be divisible by the irreducible equation
of which p is a root. In expressing that this division is exact [i.e. that the remainder on
division is zero], one will arrive at equations in am, am−1, . . . that one will treat [as? like?]
the equation F (x) = 0, until one comes to numerical equations. One must remark that m

can be always be taken smaller than the degree of the equation that gives p.
These procedures are painful to carry out in general, but one can simplify them and

obtain more precise results in some very extended cases that we will especially study [i.e.
in detail].
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