
Abstract

Three geometric construction problems—the duplication of the cube, tri-
section of an angle, and quadrature of a circle—fueled the mathematical
enterprise of the ancient Greeks and the many generations of mathemati-
cians that followed. In the strictest interpretation, solutions were restricted
to those using only two tools: a straightedge and compass. In their search
for solutions, however, the Greeks and early modern geometers developed
a variety of mechanical and other solutions to the problems, extending this
restriction. Despite these great advancements, Pappus, a commentator of an-
cient Greek mathematics, insisted that the planar problems of construction
should be solved by a planar solution. This sparked a fruitful debate among
mathematicians that came with the revival of these problems in the Western
world in the late sixteenth and early seventeenth centuries. Descartes would
provide the necessary algebraic foundation to complete the proofs of impos-
sibility, which would be published in the nineteenth century by Wantzel and
Lindemann. The proofs rely on Descartes’ notions of polynomials and can
be interpreted by the more modern concepts of field theory.
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Chapter 1

Introduction

The civilization of ancient Greece remains a beacon for its advancements in
literature, architecture, philosophy, and mathematics. Indeed, the advance-
ments of Greek geometers provided a foundation for the entire mathematical
enterprise for the next two millennia, from the Classical period, through
the Middle Ages, and into modernity in both the Islamic world and Europe.
This progress is manifested not only by the content of the Greek works—their
brilliance is evident—but also in how the ancients went about their research.
They opened schools, championed reason and rationality, and were intrigued
by the physical and natural complexities of the world. Such is the context
for one of the greatest mathematical endeavors history has ever witnessed.

Historians have divided the Greek mathematical enterprise into two dis-
tinct periods. The first of which, the Classical period, dates from 600 to 300
BCE, roughly the three centuries from the demonstrative works of Thales to
the extraordinary Elements of Euclid.1 During this time, Athens flourished
as the cultural hub, culminating in the establishment of Plato’s Academy
around 387 BCE. The Hellenistic, or Alexandrian, period ranges from 300
BCE to roughly 415 CE, beginning with the establishment of the Univer-
sity of Alexandria, of which Euclid served as the first mathematical chair.2

Throughout the entirety of the epoch, there remained three clear features of
Greek mathematics: the importance of deductive reasoning, the emphasis on
abstract mathematics, and the prominence of geometry to solve problems.3

Nowhere are these characteristics more apparent than the three construction

1Eves, p.84.
2Eves, p.112.
3Hollingdale, p.113.
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problems that dominated the mathematical field in antiquity. These three
problems are described as follows:

1. Duplication of the cube: constructing a cube having twice the volume
of a given cube.

2. Trisection of an angle: constructing an angle with one-third the mea-
sure as that of a given angle.

3. Quadrature of the circle: constructing a square with the same area as
that of a given circle.4

The duplication of the cube, tradition suggests, likely began from pro-
nouncement of the citizens of Delos around 430 BCE. A plague had stricken
the island of Delos, and a delegation of concerned citizens sought the ora-
cle of Apollo to determine how the plague could be alleviated.5 The oracle
responded that the altar to Apollo—a cubical shrine—should be doubled
in volume. Ignorant of geometry, the obedient Delians merely doubled the
edges of the altar, increasing the volume eightfold.6 Apollo then cursed the
city by strengthening the plague. Plato claimed that this divine problem was
conceived not to double the size of an altar, but to make the Greeks aware
of their ignorance of geometry.7 The mathematician and historian Howard
Eves gives a similar tale, where King Minos commands that the cubical tomb
of his son be doubled.8 The former description appears to have been more
common, as the duplication of the cube has long been referred to as the
Delian problem.

The origins of the other two construction problems are not associated
with such romantic tales. Historians believe that the trisection of an angle
likely arose as a natural progression to the multi-section of a given angle,
after bisections of both an angle and a segment were proved by Euclid.9 Or
perhaps, some argue, the trisection of an angle stemmed from attempts to
construct a regular nine-sided polygon, after the construction of a regular
pentagon had been discovered.10 The origin of the quadrature of the circle
is attributed to Anaxagoras, who attempted the problem while passing the

4Eves, p.89.
5Burton, p.119.
6Boyer, p.64.
7Burton, p.119.
8Eves, p.90.
9Eves, p.92.

10Heath, p.235.
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time in prison.11 Collectively, these three problems would dominate the field
of geometry not just for the ancient Greeks, but for many mathematicians
over the following centuries.

In solving these problems, however, the Greeks also initiated a deeper
study of mathematical methodology by asking for solutions using particular
tools. In fact, many commentators of Greek mathematics assert that the
Greeks restricted themselves to the use of only two tools: a straightedge and
a compass, though the origin of such a restriction is still greatly debated.
Knorr, for example, writes that scholars agree that Euclid “would become
the one responsible for the formal project of effecting geometric constructions
within the restriction of employing compass and straightedge alone.”12 Simi-
larly, Eves asserts that the postulates of Euclid’s Elements restrict geometers
to the use of the straightedge and compass.13 These tools, therefore, are often
called Euclidean tools, named after the geometer who begins his Elements
with three postulates on how lines and circles were to be constructed.

Other scholars assert that it is Plato who is responsible for imposing
the restriction to the Euclidean tools. In his work Quaestiones Convivales,
Plutarch notes Plato condemned Greek mathematicians who endeavored to
“bring down” geometry to “mechanical operations; for by this means all
that was good in geometry would be lost and corrupted.”14 James Gow, a
nineteenth-century historian of Greek mathematics, therefore states that “to
Plato we owe the strict limitation of geometrical instruments to the ruler and
compass.”15 David Burton, author of The History of Mathematics, agrees,
stating “tradition has it that Plato insisted that the task be performed with
straightedge and compass only.”16

No matter the origin of this restriction, it is important to specify how
these tools were to be used in problems of geometric constructions. With a
straightedge, geometers could draw a straight line through any two points.

11Boyer, p.64.
12Knorr, p.15. Knorr goes on to say that while the restriction to these tools stems from

Euclid’s postulates, it is Oenopides of Chios, a fifth century BCE geometer, who “set about
the task of regularizing and classifying problems according to the means of construction
adopted,” (p.16).

13Eves, p.90.
14An online version of the works of Plutarch can be found

at the Perseus Digital Library. This passage is consulted from
http://data.perseus.org/citations/urn:cts:greekLit:tlg0007.tlg112.perseus-eng1:8.2.1

15Gow, p.181.
16Burton, p.116.
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Similarly, with a compass they could draw a circle with any point as its center
and passing through any other point. Transferring distance was prohibited—
thus the straightedge could not be marked or graduated and the compass
must be “regarded as collapsing as soon as either point is lifted off the pa-
per.”17 In the fourth century BCE, nearly seven hundred years after Euclid,
the mathematician Pappus comments on the classification of geometric prob-
lem solving, stating that “there are three kinds of problems in geometry.”18

The first are called planar problems, so named because they can be solved
by straight lines and circles and therefore their construction has its origin
in the plane. There are also linear geometric problems, which are generated
from more complex lines, such as “spirals and quadratrices and conchoids
and cissoids.”19 Finally, Pappus classifies problems as solid if their solution
involves the use of curves defined using solid figures, such as plane sections
of a cone.

Pappus’ influence on geometry and the legitimacy of constructions ex-
tended into the early modern period, over one thousand years after his death.
Indeed, the Latin translation of his Collection in 1588 by Commandino would
provide the spark for many mathematicians to take up these concerns.20 The
mathematician and historian Henk J.M. Bos describes how Christopher Clav-
ius, Johannes Kepler, Johannes Molther, Francois Viète, and René Descartes
each addressed the matter of demarcating between legitimate and illegiti-
mate geometrical constructions and classifying the different geometrical pro-
cedures. Each, in turn, offered his own solutions to these three problems
of antiquity, extending the field of mathematical knowledge. Perhaps most
significantly, Descartes made advancements in the field of algebra that would
ultimately provide the bridge between Classical geometry and more modern
applied and analytical mathematics.

Moreover, although they were unable to solve the three construction prob-
lems using just the Euclidean tools, ancient Greek geometers did produce
remarkable solutions using other methods. Hippias of Elis, for example, de-
veloped the quadratrix curve in the fifth century BCE that would later be
used to both square the circle and trisect the angle.21 Archimedes, the third
century BCE geometer and inventor, developed a spiral that could produce

17Burton, p.116.
18Knorr, p.341
19Ibid, p.342.
20Bos, p.37.
21Boyer, p.69.
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solutions to the angle trisection and the squaring of the circle.22 Around 350
BCE, the Greek mathematician Menaechmus employed certain conic sections
to duplicate the cube, while nearly a century later Nicomedes achieved the
same result using conchoidal curves.23 Some geometers even invented their
own apparatuses to construct these curves, stopping at no limits to provide
solutions to these problems, and advancing the mathematical field beyond
what their predecessors had established.

While mechanical solutions to the three construction problems flourished
throughout antiquity and the early modern period, solutions using just the
Euclidean tools were not proved to be impossible until the nineteenth century.
In 1837, for example, the French mathematician Pierre Wantzel detailed the
proofs of impossibility of trisecting an angle and duplicating the cube using
just a straightedge and compass.24 Rooted in these proofs is the concept of
reducing geometric problems to algebraic equations, first set forth by early
sixteenth and seventeenth century mathematicians, particularly Descartes.
These two problems reduce to cubic equations that do not yield rational roots
and do not have a degree of a power of 2, and hence their construction using
the Euclidean tools is impossible.25 The quadrature of the circle was proved
impossible in an 1882 paper by Ferdinand von Lindemann. He proved that π
is a transcendental number that cannot be the root of an algebraic equation,
hence it follows that a circle cannot be squared using just a straightedge and
compass.26

This thesis will study all the stages in this long and tangled story, with
the aim of showing how the Greeks’ work on these problems stimulated later
developments.

22Ibid, p.126.
23Burton, p.123.
24Wantzel’s work, On the means of recognizing whether a geometric construction can

be made with straightedge and compass, was translated from French to English by John
Little.

25Ibid, p.121.
26Boyer, p.573.
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Chapter 2

Mechanical and Other
Solutions to the Construction
Problems

The search for solutions to the three famous problems fueled the mathemat-
ical enterprise of the ancient Greeks. Yet, early on in their attempts, the
Greeks realized the restrictions of using only the Euclidean tools were hin-
dering their abilities to develop solutions.1 Many mathematicians, therefore,
developed their own techniques to solve the construction problems, using
methods and tools beyond the use of straightedge and compass. In this re-
gard, these geometers were successful. Yet attempts to provide solutions
to the three construction problems using only the Euclidean tools persisted
through the Dark Ages and into the early modern period.

The first mechanical method used to solve the construction problems was
developed by Hippias of Elis in the fifth century BCE. The only surviving
sources on the life of Hippias come from the dialogues of Plato, in which he
is cast in a mostly negative light.2 Born about 460 BCE, Hippias was part
of a group of itinerant teachers, called “sophists,” who would travel through-
out Greek cities, sharing their mathematical and philosophical knowledge
in exchange for money. While many sophists were well-informed and rep-
utable scholars serving as effective tutors, others were mere imposters seeking
money, and thus “accusations of shallowness directed against the sophists”

1Burton states that “early investigators must have suspected that the allowable means
were inadequate,” (p.116).

2Burton notes that Plato describes Hippias as “an arrogant, boastful buffoon,” (p.125).
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Figure 2.1: The quadratrix curve of Hippias, the curve BFG.

were, in some ways, warranted.3 Perhaps not surprisingly, Plato and other
skeptics castigated the sophists, and the term acquired a negative, cynical
connotation.

Leaving aside accusations of his morals, it is true that Hippias’ quadra-
trix would become a critical mathematical contribution to the solutions of
the three geometric problems.4 The construction of the quadratrix curve,
pictured in Figure 2.1, can be described as follows.5

Given a square ABCD, let segment BC move down with a constant
velocity toward segment AD. At the same moment that BC leaves its initial
position, let side AB rotate clockwise with a constant velocity, so that both
segments coincide at exactly the same time with AD. At any given moment,
define the positions of the two moving lines to be MN and AE, intersecting
at point F . The locus of these intersection points forms the quadratrix
curve BFG. This definition, however, does not locate any point on AD.
If the moving segment MN and the rotating radius AE coincide with AD
simultaneously, then they intersect everywhere along AD. The point on the
quadratrix, labelled as G, can only be defined by the modern notion of a
limit of points F on the sector of the curve.

The quadratrix is therefore the first curve beyond the straight line and

3Boyer, p.68.
4The definition of the quadratrix curve can be found on Burton, p.126 and Boyer,

p.68-9.
5This construction can be found in the seventh edition of Burton’s The History of

Mathematics: An Introduction on p.131.
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circle curve “that could not be drawn by the traditionally required straight-
edge and compass” but rather must be plotted point by point.6 Hippias had
also developed an apparatus which could effectively draw a quadratrix curve,
leading many geometers to further reject its use on the grounds of its me-
chanical origins. Plutarch, for example, cites Plato as chastising mechanical
constructions, for they make “sensible things more powerful over us than
intelligible, and by forcing the understanding to determine rather according
to passion than reason.”7 To Plato, geometry was a divine gift, and it is
through mechanical operations that one “loses that instrument and light of
the soul, which is worth a thousand bodies, and by which alone the Deity
can be discovered.”8

The quadratrix curve of Hippias can easily be used to trisect a given
angle. But, it is important to first consider the case for trisecting a given
line segment, which is used in the proof. This construction, however, does
not follow immediately from any proposition Euclid provides; rather, it uses
the result of a construction he gives in Proposition 10 of Book IV and facts
about similar triangles. Given a segment AB to be trisected, draw another
line, CA, intersecting AB at A, forming an ∠BAC. Construct a circle with
center A that intersects both AB and AC, and denote by X the intersection
with AC. Now, draw another circle with center X and radius AX, and let
Y denote the point of intersection with AC. Draw a third circle with center
Y and radius Y X and call Z the point of intersection with AC. Now, join
Z and B. Construct a line from Y to AB parallel to ZB, with S as the
point of intersection. Finally, draw a line from X to AB parallel to both
Y S and ZB, with R being the point of intersection with AB. The claim is
that AR = RS = SB = 1

3
AB, and this result follows from the facts that

lines ZB, Y S, and XR are all parallel, AX = XY = Y R, and properties of
similar triangles.

With this construction in hand, the trisection of the angle, shown in
Figure 2.2, can be described as follows.9

Suppose, for example, that ∠XAY is the angle to be trisected. Position
this angle within a square, with the initial ray coinciding with the base of the

6Burton, p.125. Boyer also states that that we owe Hippas “the introduction into
mathematics of the first curve beyond the circle and straight line,” (p.68).

7Plutarch, http://data.perseus.org/citations/urn:cts:greekLit:tlg0007.tlg112.perseus-
eng1:8.2.1.

8Ibid. For Plato, “God always plays the geometer.”
9Burton, 7th ed. p.132.
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Figure 2.2: The quadratrix curve to trisect an angle.

square. Construct a quadratrix curve, BFG, which intersects the terminal
ray, AX, at F . Erect a perpendicular from AD to F , with the point on
AD denoted by H. Trisect segment FH to get the point P , and draw the
parallel through P to AD, labelled as MN . This parallel then intersects the
quadratrix curve at Q, and ∠QAD is one-third of angle ∠XAY .10

The use of the quadratrix to square the circle—which ultimately gave
the curve its name—is given by Dinostratus in the mid-fourth century BCE.
It should be noted, however, that this work of Dinostratus has survived
only because of the preservation of his work in later texts, such as those by
Pappus. This solution, however, requires the use of the point G. If this point
is assumed to be found, Pappus provides a proposition involving three line
segments and the circular arc BD, stated as

BD
_

/BC = BC/AG.

This is proved by a double reductio ad absurdum argument, where the alter-
natives to the proposition are proven to be false.11 Assume that

BD
_

/BC = BC/AK,

10Boyer, p.69.
11Burton notes that this is one of the “earliest examples in Greek mathematics of the

indirect method of reasoning Euclid used so extensively,” (p.127).
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where AK > AG. Let the circle with center A and radius AK intersect the
quadratrix at F and side AB at L. From F draw FH perpendicular to AD.
As Burton states, “since corresponding arcs of a circle are proportional to
their radii,”

BD
_

/BC = LK
_

/AK,

and from the hypothesis, it follows that

LK
_

= BC.12

Yet it is known that
LK
_

/FK
_

= BC/FH

from the definition of the quadratrix. Since

LK
_

= AB,

it follows that
FK
_

= FH,

which cannot be true, since “the perpendicular is shorter than any other line
or curve” from point F to AD.13. A similar argument will show that AK
cannot be less than AG, thus AK = AG and

BD
_

/BC = BC/AG.

Therefore, if BC = 1, AG = 2
π
. It is thus possible to construct a segment

with length π
2
, which can then be doubled to produce a segment with length

equal to π. To construct a square with area equal to π requires the construc-
tion of a segment of length

√
π. To do this, construct a segment AB with

length π, and extend from B a unit segment BC of length 1, to get segment
AC equal to π+ 1. Now, construct a circle with diamter AC. From B, erect
a perpendicular to AC, and let D denote the point of intersection with the
circle. Join AD and DC to make a right triangle, 4ADC, which is similar
to both 4ABD and 4DBC. Therefore,

x

1
=
π

x

12Burton, p.127
13Boyer, p.97
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and thus x2 = π, so x =
√
π. Hence, given a segment of length π, a square

with area π can be constructed, and the squaring of the circle is complete.
Dinostratus’ brother Menaechmus was also a famed mathematician of the

fourth century BCE, eventually becoming a tutor to Alexander the Great.14

Prior to Menaechmus, Hippocrates of Chios made considerable progress in
solving the duplication of the cube, reducing it finding two mean proportion-
als of a and 2a; that is, lengths x and y satisying

a

x
=
x

y
=

y

2a
(2.1)

While Hippocrates himself did not find the mean proportionals using the
Euclidean tools, it was nevertheless a “significant achievement” to reduce
“a problem in solid geometry to one in plane geometry.”15 Menaechmus,
however, anticipating work with conic sections, discovered that “the cutting
of a right circular cone by a plane perpendicular to an element of the cone”
produces a “family of appropriate curves” that satisfy the property expressed
by Hippocrates.16. These curves, in modern terms, would become known as
the ellipse, parabola, and hyperbola, which are names given by Apollonius.

With modern algebraic notation, the discovery articulated by Menaech-
mus can provide a theoretical solution to the duplication of the cube.17 Given
a cube of edge a, construct two parabolas, one with latus rectum a and the
other with latus rectum 2a, sharing a common vertex and perpendicular axes,
as pictured in Figure 2.3.18

Thus, the two equations corresponding to the parabolas are

x2 = ay, (2.2)

y2 = 2ax (2.3)

Isolating x in (2.3) gives

14Burton, p.123.
15Burton goes on to say: “From this time on, the duplication of the cube was always

attacked in the form in which Hippocrates stated it,” (p.123).
16Boyer, p.93.
17A thorough explanation of this solution can be found on Burton, p.123 and Boyer,

p.95.
18Burton, 7th ed. p.128.
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Figure 2.3: Conic sections to duplicate the cube.

x =
y2

2a

which substituted into (2.2) yields

y4

4a2
= ay

or

y =
3
√

4a

Substituting this result into (2.3)

(
3
√

4a)2 = 2ax

or

13



x =
3
√

2a

Therefore, the x-coordinate of the intersection of the two parabolas is
the desired edge of the cube sought. This solution is not mechanical in the
same sense as the quadratrix curve, which uses moving segments to construct
an entirely new curve besides those the Euclidean tools provide. Menaech-
mus’ solution, rather, is purely theoretical. However, the desired curves and
segments cannot be constructed with a straightedge and compass, so this
approach also goes beyond the strictest interpretation of the construction
problems.

About a century after Menaechmus, the third-century BCE geometer
Nicomedes attempted to find solutions to the problems of the angle trisection
and cube duplication using a neusis construction. The word neusis is Greek,
and it roughly means “sloping” or “verging towards.” Bos defines the neusis
construction as follows: “Given two lines, a point O and a segment a, to
draw a straight line through O intersecting the two lines in points A and
B such that AB = a.”19 Therefore, the mechanical nature of this type of
construction lies in marking a straightedge to transfer a segment of length a,
which was in violation of the use of Euclidean tool. If marking a straightedge
were permissible, then the transferring of distances would be legitimate, and
thus this construction would be accepted as planar.

Burton describes Nicomedes’ use of the neusis to trisect an angle, pictured
in Figure 2.4.20

Let ∠AOB be a given angle. Through B, draw a line perpendicular
to segment OA at C and another line parallel to OA. Using a straightedge,
mark the length a = 2OB and slide the straightedge so that it passes through
O, with endpoints of segment a as P on BC and Q on BD (so PQ = a). If
M is the midpoint of PQ, then OB = a

2
by construction, PM = MQ = a

2
by

definition of a midpoint, and BM = a
2

since “the midpoint of the hypotenuse
of a right triangle is equidistant from the endpoints of its sides.”21 Therefore,
∠MOB = ∠BMO, since the base angles of an isosceles triangle are equal.
In 4BMQ, ∠BMP = ∠MBQ + ∠MQB from the exterior angle theorem,
and thus ∠BMP = 2∠MQB since 4MQB is isosceles. Since BD and OA

19Bos, p.168.
20Burton, 7th ed. p.129.
21Burton, p.123. The corresponding right triangle in the figure is 4BPQ.
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Figure 2.4: The neusis construction to trisect an angle.

are parallel, the interior angles ∠AOQ and ∠BQO are equal. Thus, since
∠AOB = ∠AOQ + ∠QOB, ∠AOB = 3∠AOQ, and therefore ∠AOQ =
1
3
∠AOB, and the angle is trisected.

Nicomedes also approached the duplication of the cube by means of find-
ing the two mean proportionals, much like Menaechmus.22 His solution is
described as follows, referring to Figure 2.5.23

Construct a rectangle ABCD with side AB = a and AD = 2a, with M
being the midpoint of AD and N the midpoint of AB. Extend the segments
CM and BA to meet in G. Choose the point F on the perpendicular FN to
be such that FB = a. Draw a segment BH parallel to GF and a segment
FP to cut segment AB at p, with P chosen such that HP = a. Extend the
segments PC and AD until they meet at Q. Let DQ = x, BP = y, and
FH = z.

With this construction established, one can see that4PAQ,4PBC, and
4CDQ are similar. Each triangle contains a right angle, ∠PCB = ∠PQA
since they are alternate interior angles, and ∠APC = ∠DCQ since they are
also alternate interior angles. This similarity establishes the relationship

a

x
=

y

2a
=

a+ y

2a+ x
. (2.4)

Likewise, 4PBH and 4PGF are similar, since both contain ∠P , ∠PBH =

22See Burton, p.123.
23Burton, 7th ed. p.129.
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Figure 2.5: Two mean proportionals to duplicate the cube.

∠PGF , and ∠PHB = ∠PFG by definition of alternate interior angles. This
similarity establishes the relationship

a

y
=

z + a

y + 2a
.

Cross-multiplication yields ay + 2a2 = yz + ay. Subtracting ay from both
sides leaves 2a2 = yz, or a

z
= y

2a
. Substituting this into (4) shows that a

x
= a

y
,

and thus x = z. Since 4FNB and 4FNP have FN as a common side, the
Pythagorean Theorem produces

a2 − a

2

2

= (x+ a)2 −
(
y +

a

2

)2

,

or

x

y
=

y + a

x+ 2a
.

From (2.4), this yields

a

x
=
x

y
=

y

2a
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which is precisely the equation (1) that Hippocrates of Chios discovered in
the fourth century BCE. Thus, the segments DQ = x and BP = y are the
two mean proportionals between a and 2a, which implies that given a cube
of edge a, x is the edge of the duplicated cube.

The third century BCE also saw the flourishing of Archimedes, considered
by many scholars as the greatest mathematician of all antiquity. Few details
of his life are known, though it is speculated that he was born about 287
BCE in Syracuse, a Greek city on the coast of Sicily.24 While it is likely that
he studied at the Museum in Alexandria under former students of Euclid, he
spent most of his productive years in Syracuse, where he devoted his time to
studying and experimenting.25 Tradition has it that Archimedes was killed
in 212 BCE during a siege of Syracuse by Roman troops in the Second Punic
War.

In addition to mathematics, Archimedes’ interests also included “astron-
omy, hydraulics, mechanics and general engineering.”26 It was indeed his
mechanical inventions that earned Archimedes great fame throughout his
life. His Archimedean screw, for example, a device still in use today, serves
to raise water, primarily in irrigation systems. He also invented a number
military defenses used to fight off the siege of the Romans, and his work with
pulleys and levers led him to boast: “Give me a place to stand and I will
move the earth.”27.

Despite his mechanical achievements, Archimedes “remained firmly within
the Greek philosophical tradition” in championing theoretical studies and
abstract thought.28 He was, therefore, attracted to the three famous con-
struction problems of geometry, and invented a new type of curve that would
provide solutions to both the angle trisection and quadrature of the circle.
The curve, known as the Archimedean spiral, is pictured in Figure 2.6 and
described in his treatise On Spirals :29

If a straight line [half-ray] one extremity of which remains fixed be
made to revolve at a uniform rate in the plane until it returns to
the position from which it started, and if, at the same time as the

24Burton, p.186. Burton also notes that, according to Plutarch, Archimedes’ family was
of the same royalty as King Hieron II, ruler of Syracuse.

25Ibid, p.187.
26Hollingdale, p.65.
27Burton, p.187
28Hollingdale, p.66.
29Burton, 7th ed. p.204.
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Figure 2.6: Construction of the Archimedean spiral.

straight line is revolving, a point moves at a uniform rate along
the straight line, starting from the fixed extremity, the point will
describe a spiral in the plane.30

As Boyer explains, the spiral is “the plane locus of a point which, start-
ing from the end point of a ray or half line, moves uniformly along this ray
while the ray in turn rotates uniformly about its end point.”31 Yet, while
Archimedes’ spiral was, like many of his developments, inspired by practical
considerations, it was nevertheless considered a mechanical solution. Like
the quadratrix, the spiral is a curve constructed from means other than a
straightedge and compass, and therefore could not provide a legitimate solu-
tion to the construction problems, according to the strictest interpretation.

However, with the use of the Archimedean spiral, the trisection of an
angle can be carried out with ease.32

Refer to Figure 2.7.33 Take ∠POA to be trisected. Position the angle
so that the vertex and initial side of the angle coincide with initial point O
of the spiral and the initial position OA of the rotating ray. The point P is
given to be the intersection of the terminal side of the angle and the spiral.
Trisect OP at Q and R, and construct two circles with centers at O and OQ
and OR as radii. If these points intersect the spiral at points U and V , lines

30Burton, p.196.
31Boyer, p.126.
32A description of this solution can be found on Boyer, p.126 and Burton, p.200.
33Burton, 7th ed. p.210.
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Figure 2.7: The Archimedian spiral to trisect an angle.

OU and OV trisect ∠POA.
The Archimedean spiral also provides a clever solution to the squaring of

the circle, pictured in Figure 2.8.34

Given a circle with centerO and radiusOA, construct a spiral fromO such
that the end of its first revolution coincides with A. Construct a tangent to
the spiral at A, and extend a perpendicular to OA from O, where the tangent
and the perpendicular intersect at B. Using Cartesian coordinates, label the
point O as the origin, (0, 0), and call the radius of the circle x, where A
is labelled as (x, 0). The slope of the tangent line can be derived using a
parameterization:

α(θ) =

(
θx

2π
cos(θ),

θx

2π
sin(θ)

)
.

The tangent line, therefore, has a parameterization

α′(θ) =

(
x

2π
cos(θ)− θx

2π
sin(θ),

x

2π
sin(θ) +

θx

2π
cos(θ)

)
,

and thus
α′(2π) =

( x
2π
, x
)
.

34Burton, 7th ed. p.210.
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Figure 2.8: The Archimedian spiral to square the circle.

The slope of the tangent at 2π is given as

x
x
2π

,

which is 2π. Hence, the coordinates of B must be (0,−2πx), and the length
of the segment OB is given as 2πx, which equals the circumference of the
circle. The area of 4OAB, thererefore, is given as 1

2
(x)(2πx) or πx2. The

area of 4OAB is thus equal to the area of the circle.35

To transform the triangle into a square requires some algebraic manipu-
lation. First, construct a line segment, AB equal in length to the area of the
triangle and circle, say y. From point B, extend the segment a unit length to
produce a new segment, AC, with length y + 1. At B, erect a perpendicular
BD to AC with length x. Bisect segment AC at O and construct a circle
with center O and radius OA, with D on the circle. From propositions given
in Book I of the Elements, 4ADC makes a right triangle, which is similar
to 4ABD and 4CBD. This similarity establishes the relationship

x

1
=
y

x
,

35Heath, in his translation of Euclid in The Thirteen Books of The Elements, cites
Proclus: “Archimedes actually proved that any circle is equal to the right-angles triangle
which has one of its sides about the right angle [the perpendicular] equal to the radius of
the circle and its base equal to the perimeter of the circle. But of this elsewhere,” (p.347).
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or x2 = y. A square with side length x thus has the same area as the triangle
and circle, and the squaring of the circle is accomplished.

It should be noted, however, that this algebraic technique would not be
how the Greeks—Euclid and Archimedes in particular—would approach the
problem. Heath, in his translation of the Elements, cites two propositions
from Euclid that allow one to transform the triangle into a square with equal
area: Proposition 45 from Book I, which enables one to construct a paral-
lelogram equal to a given rectilinear figure, and Proposition 14 from Book
II, which states that one can construct a square equal to a given rectilinear
figure.36

The search for solutions for the construction problems did not end with
the fall of the Greek world. Rather, it took two thousand years for valid
proofs of impossibility to be published, cementing the claim that the three
geometric problems of antiquity could not be solved by straightedge and
compass alone. The mathematical developments in the early modern period
that led to the breakthroughs of algebra and calculus would, ultimately,
provide the missing link that was needed for the proofs.

36Heath, p.347. Heath adds a comment by Proclus: “I conceive that it was in conse-
quence of this problem that the ancient geometers were led to investigate the squaring of
the circle as well.”

21



Chapter 3

The Transmission of Greek
Work on the Construction
Problems to Renaissance
Europe

The Golden Age of Greek mathematics had reached its twilight at the end of
the third century BCE. Over the next two centuries, Greece fell to Roman
conquest, with many schools, texts, and intellectual ideas being destroyed
and defeated.1 Yet, during the third and fourth centuries CE, the mathe-
matical field experienced a brief revival, where many commentators of Greek
mathematics expounded on the works of their predecessors. The majority
of these commentators, including scholars such as Hero, Eutocius, and Pro-
clus, contributed very little in the way of original work in their publications.2

These men, therefore, are not regarded as having advanced the development
of geometrical ideas or introducing new concepts on technical solutions. They
are, however, praised for the transmission of the textual works of their pre-
cursors, since most of our knowledge of ancient Greek mathematics stems
from their commentary. Additionally, these commentators offered evaluative

1Burton notes that the Romans were more interested in the practical use of mathematics
for engineering purposes, disregarding the theory behind it (p. 205).

2As Knorr asserts, “the prospect of new and interesting discoveries was discouraging,”
(p.340).
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analysis of mathematical works of both their time and earlier.3 Through the
lens of these commentators, modern scholars are able to glimpse the field of
geometrical problem solving as it advanced through ancient times. Nowhere
is this more apparent than in the work of Pappus of Alexandria.

Pappus is the most renowned mathematician of his time, spanning the
late third and first half of the fourth century CE. His most famous work is
his Mathematical Collection, a series of eight books, in which he originally in-
tended to consolidate much of the geometrical advancements that had taken
place in the previous centuries.4 Yet Pappus also offers original proofs, the-
orems, and concepts, extending and clarifying results of earlier geometers.
One of his most interesting contributions is his classification of problems,
where he attempts to assign geometric problems into categories based on the
constructions required for their solutions. In doing so, Pappus has helped
“preserve a shadow of ancient metamathematical thinking,” where modern
scholars can gain a better understanding of the context of the ancients’ search
for solutions of geometric construction problems.5

Despite the significance of Pappus as a commentator on ancient geome-
try, there is little scholarship that coherently traces the Collection from its
fourth-century CE origin. Gow notes that Pappus “is not cited by any of his
successors,” while the works of others, like Ptolemy and Diophantus, were
successfully transmitted through a “continuous history of progress.”6 It is
not until Commandino’s Latin translation of the Collection became available
in 1589 that many early modern mathematicians gained a greater insight into
the scope, methods, and results of Greek mathematics.7

In two nearly identical passages regarding the problems of the cube dupli-
cation and angle trisection, Pappus classifies geometric problems into three
distinct categories: planar, solid, and line-like. Planar problems were those

3For example, Theon and Eutocius both contributed to the collection of editions of
the works of Euclid, Archimedes, and Apollonius, three mathematical giants of Ancient
Greece (Knorr, p.341).

4Burton describes that the first and second books of the Collection are missing, while
Pappus’ commentary on Ptolemy’s Almagest is his only other surviving work (p.221).

5Knorr, p.341.
6Gow, p.308. He goes on to say that “no Indian or Arab ever studied Pappus or cared

in the least for his style or his matter,” (p.309).
7Commandino (1509-1575) was a sixteenth century Italian humanist and mathemati-

cian. He is most notable for translating the works of Greek mathematicians and com-
mentators, including Aristarchus, Heron, Euclid, and Pappus. His translation of Pappus’
Collection was published fourteen years after his death.
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that could be solved by straight lines and circles, and therefore just by the
use of the Euclidean tools. A solid problem, Bos translates, “employs sur-
faces of solid figures, namely the conic surfaces.”8 Finally, line-like, or linear,
problems involve more complex lines and curves than these Euclidean tools or
conics provide, such as the quadratrix, spiral, and cissoids. Several discrep-
ancies in such a classification lead historians to suggest that this was largely
Pappus’ own categorization rather than that of previous mathematicians.9

For example, from the modern point of view, if the planar class consists
exclusively of lines having their origins in the plane, than it should also in-
clude the spiral, quadratrix, and conchoids.10 Pappus also is clear that the
solid class refers only to conic sections and not to constructions derived from
curves or other surfaces studied in solid geometry. Such inconsistencies with
respect to terminology suggest that even Pappus himself did not appreciate
some of these subtleties in the classification he laid out.

These discrepancies also imply that Pappus’ influence would likely have
been negligible if his Collection had only provided these classifications. Yet,
there are two reasons why his work would become so influential. First, Pap-
pus provides an extensive discussion of geometric solutions by earlier mathe-
maticians. For many of these geometers, their work survives only in Pappus,
and thus he provides essential information explaining the scope and content
of Greek mathematics. Second, he combines his classification with, as Bos
states, a “methodological precept: problems should be constructed with the
means appropriate to their class.”11 This, indeed, is where Pappus’ origi-
nality is evident. Previous classifications of problems, whether by Pappus
or other geometers, were merely descriptive—problems were differentiated
based on the method of construction. Pappus, however, provides a norma-
tive claim to distinguish between problems, insisting that problems be solved
with a solution appropriate to their class.

Ironically, there is also a discrepancy among different translations of this
precept by historians, leading to significantly different interpretations not

8Knorr, p.341.
9For example, Knorr cites that Apollonius is attributed to classifying loci as “ephectic,”

“diexodic,” and “anastrophic” based on the dimension required to construct the locus
(p.343).

10The definition and constructions of these and other curves will be provided in Chapter
2. For now, suffice it to say they are other means the Greeks developed to create curves
other than a compass and straightedge.

11Bos, p.49.
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only of the passage itself, but also of its impact on the entire mathematical
enterprise of problem solving. Knorr translates the precept as follows:

“The following sort of thing somehow appears to be no small error
to geometers: whenever a planar problem is found by someone via
conic or linear [lines], and on the whole whenever [some problem]
is solved from a class other than its own, for instance, the problem
on the parabola in the fifth book of Apollonius’ Conics and the
solid neusis toward a circle assumed by Archimedes in the book
On the Spiral ; for by using no solid one is able to find the theorem
proved by him.”12.

He goes on to call such a precept a “rather timid pronouncement” and
virtually the only surviving statement that provides a formal preference for
planar constructions over others.13 If this precept were indeed timid, as Knorr
suggests, it is unlikely such a restriction would have any strong influence over
geometers, either in Antiquity or the early modern period.

Commandino, however, provides a much more dramatic translation of the
original Greek text. As Bos translates Commandino’s passage:

Among geometers it is in a way considered to be a considerable
sin [emphasis added] when somebody finds a plane problem by
conics or line-like curves and when, to put it briefly, the solution
of a problem is of an inappropriate kind.14

This translation, therefore, carries a much more compelling tone than
Knorr’s “no small error.” This “strict directive” would therefore have a wide
influence on the field of problem solving. Indeed, Bos provides several exam-
ples of later geometers who cite Commandino’s translation of this precept in

12Knorr, p.345
13Yet, Knorr describes, this pronouncement is “almost invariably presented in modern

accounts as the principal objective of problem solving throughout the ancient tradition,”
(p.345).

14Bos, p.49. Bos also gives Commandino’s Latin translation, in which he uses the word
peccatum as a translation of the original Greek αµάρτηµα, which Bos then translates as
“sin.” Actually, the full semantic range of the Greek word also includes failure, fault, and
error (see the Greek-English Lexicon by Liddell and Scott). That Commandino chooses
the term peccatum or “sin” is perhaps a reflection of sixteenth-century Italy, when Latin
was used almost exclusively by scholars and in the Church.
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their works.15

While the influence on later geometers may be apparent, much evidence
refutes the assumption that ancient geometers at the height of the Greek
enterprise were guided by this rule. To impose a restriction on problem
solving would have served as a detriment to the search for solutions. In
the early stages of geometric development, Knorr states “the ambition is to
find solutions by whatever means one can.”16 This they did—Hippocrates
constructs quadratures of lunules using a neusis, Menaechmus duplicates
the cube via conics, and Archimedes trisects the angle with a spiral. Even
Euclid, Knorr argues, should not be considered as having followed Pappus’
precept. Although the postulates in Book I of the Elements lead only to
planar constructions in Pappus’ scheme, Euclid still pursued the study and
constructions of solid problems, especially from conic sections, in many of his
later works.17 Additionally, when geometers would criticize others for their
methods of construction, these criticisms were rooted in issues of practicality
and not if they were solved by the means according to their class. In this light,
even if it were a common opinion, the influence of the precept articulated by
Pappus seems negligible during the Golden Age of Greek mathematics.

It is also possible, of course, that this precept was not consciously ignored,
but completely unknown to the early geometers. Knorr states that a formal
restriction to the use of compass and straightedge constructions would be
premature at the time of Hippocrates in the fifth century BCE.18 The body
of mathematical work had not yet evolved sufficiently to create such a for-
mal restriction as to narrow the solutions to the use of the Euclidean tools.
Knorr asserts that until the “geometric corpus had attained a size and di-
versity meriting” a restriction, it would be unwise to engage “in these formal
inquiries.”19 Such a size, he believes, was reached by the time of Apollonius
in the third century BCE. While previous geometers had not provided a clas-

15Ibid. p.50. Bos provides three examples of early modern mathematicians citing Pap-
pus’ “sin” or “error” passage. Most notably, Descartes states it would be “an error in
geometry...to try in vain to construct some problem by a simpler kind of curves than the
nature of the problem allows” [(Descartes 1637], p. 371).

16Knorr, p.345
17Euclid wrote several other mathematical treatises besides his Elements, but many of

these works have not survived. For example, his treatise Conics consists of four books
that were completed by Apollonius, who added four books himself (Heath, p.438).

18Knorr goes on to say that the “enterprise of discovering the solutions to problems
could hardly be well served by the imposition of a restriction at this early stage,” (p.40).

19Ibid, p.40.
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sification of distinct classes of problem-solving methods, Apollonius appears
to have provided such a distinction in several of his later works.20 Apollo-
nius had also sparked a contentious environment from his theory of conics,
and it seems evident that such an environment merited the formal distinc-
tion of appropriate solutions. For example, Knorr states that Apollonius was
“bound to clash” with his contemporaries working closely on similar matters
and mentions how Apollonius was “notably ungenerous” in commenting on
the achievements of his predecessors, like Euclid, and his “grudging acknowl-
edgement of others’ merit must surely have been an enormous irritant to
many.”21

Both Bos and Knorr agree that even Pappus himself did not subscribe
to his own rule. He critiques the works of Archimedes and Apollonius, es-
pecially the solid construction of Archimedes’ neusis.22 Pappus goes on,
however, to provide an alternative construction using conic sections, which
are therefore solid by his distinction. Elsewhere Pappus gives constructions
via the quadratrix and other more complex curves. He formally provides a
construction of a neusis from the intersection of conics and uses this con-
struction to trisect the angle.23 Knorr also details that it is not only what
Pappus includes in his Collection that generated confusion, but also what
he omitted. To classify a problem as solid, a geometer must prove that no
planar construction is possible.24 Yet neither Pappus, nor any other Greek
mathematician, provides such proofs; he merely claims that cube duplication
and angle trisection problems are solid in nature.

Pappus’ inconsistencies in claim and practice have led many geometers
and historians astray. It is possible, Knorr speculates, that Pappus had
extrapolated the division of loci—which had previously been classified in
descriptive accounts—to the entire field of geometric problem solving.25 He

20Knorr, p.344. Knorr cites that the terms “planar locus” and “solid locus” are at-
tributed to Apollonius as evidence that the field of geometry warranted a classification
by his time. In fact, Knorr states, his On Solid Loci gives considerable attention to the
“formalization of the results attained within the analytic tradition up to his time,” (p.348).

21Ibid, p.329.
22Ibid, p.345.
23Bos adds that Pappus provides this construction after first demonstrating that that a

“neusis between perpendicular lines could be performed by means proper to solid prob-
lems,” (p.55).

24But, a planar construction does indeed establish that the problem is planar (Knorr,
p.347).

25Knorr adds that the perspective Pappus articulates was “far from being the “standard”
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further believes that Pappus is responsible for this “defective conception” of
the classification of problems, calling it a “misconception of the nature of the
3rd-century [BCE] enterprise of problem-solving.”26

Yet the works of Pappus had a compelling influence on later geometers,
particularly after Commandino’s Latin translation at the end of sixteenth
century.27 His accounts of Greek mathematics sparked a fruitful debate in the
early modern period of how to classify geometrical problems and distinguish
between legitimate and illegitimate constructions.

One of these later mathematicians was Christopher Clavius, a German
Jesuit geometer and astronomer of the late sixteenth and early seventeenth
centuries. He was an admired publisher and composer of textbooks, teaching
for several decades at the esteemed Roman College in Italy. In his treatise
on the quadratrix curve first published in 1589, Clavius claims he had suc-
cessfully provided the legitimately geometrical solution for the quadrature of
the circle from his distinct construction of the quadratrix.28 Although other
geometers had used the quadratrix curve centuries before, Clavius provided a
unique, pointwise construction that differed from the uniform-motion proce-
dure of Hippias. Clavius’ construction involves plotting an arbitrary number
of points evenly distributed along the curve, with a close approximation for
the endpoint, or the point labelled as G in Figure 2.2.29 Additionally, Clav-
ius justified his claim by asserting that his construction was more accurate
than that of Pappus and equally as valid as the pointwise constructions of
Apollonius, Menaechmus, and Nicomedes.30

From Clavius’ quadtratrix construction and claim of a legitimate solution

ancient view,” but rather a “minority opinion held by a few of the late commentators,”
(p.348).

26Ibid, p.348.
27Bos provides several quotes by early modern geometers to illustrate this point. One

is by Pierre de Fermat, a seventeenth-century French mathematician, who states “it has
been often declared already, by Pappus and by more recent mathematicians, that it is
a considerable error in geometry to solve a problem by means that are not proper to
it,” (p.50). Additionally, Alexander Anderson, a Scottish mathematician, says “it was
considered no light offence for someone to solve a plane problem by means of conics or
line-like curves,” (p.219).

28Bos notes that the constructions Clavius provides were essentially the same as Pappus’,
with Clavius adding “an argument as to why these constructions should be considered as
genuinely geometrical.” (p.161).

29Bos translates a claim by Clavius that this approximation is “without...an error which
can be detected by the senses,” (p.162).

30Ibid, p.163-4.
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to the problem of the squaring of the circle, one can speculate that he did not
seem to think it a “considerable sin” to provide non-planar solutions to the
construction problems. He does, however, change his stance on the validity
of his construction. While in 1589 Clavius authoritatively asserted that he
solved the squaring of the circle, he later relaxed his claim and adopted a
more cautious perspective. The reason for his change of mind is unknown,
yet it can be speculated that perhaps the impracticality of the construction
led other mathematicians to critique his work. Yet, undoubtedly, the ex-
tent of Clavius’ influence was great, ultimately providing the foundation for
Descartes’ work on algebraic analysis.

While Clavius was teaching and writing in Rome, the French mathe-
matician Francois Viète was developing his own contributions to the field of
geometric constructions. In 1593, just four years after Clavius’ edition of
Euclid’s Elements, Viète published his Supplement of geometry in which he
suggested that neusis constructions be admitted as a postulate. Indeed, the
opening sentence of the work addresses this issue. As Bos translates

[To supply the defect of geometry, let it be conceded] To draw a
straight line from any point to any two given lines, the intercept
between these being any possible predefined distance.31

This claim would therefore make a neusis construction as legitimately ge-
ometrical as the use of the Euclidean tools. The very title of his work re-
flects this necessity—geometry, to this point, was deficient and thus needed
a supplement, one capable of allowing for solutions beyond just straightedge
and compass. By admitting the neusis as a postulate, Viète was effectively
avoiding the issue of its construction, asserting it was as obvious as drawing
straight lines and circles. As a result of this new postulate, Viète proved that
any problem producing third- or fourth-degree equations could be reduced
to finding a mean proportion or by trisecting an angle.32 Hence, all non-
planar problems reducible to third- or fourth-degree equations, “legitimated
by a new geometrical postulate,” could now be constructed by a neusis.33 In
this way, Viète demonstrated how algebraic analysis could extend the field
of Euclidean geometry.

31Ibid. p.168.
32Ibid, p.169.
33Ibid. p.176. Bos also states that with the acceptance of the neusis postulate, “all

problems leading to equations of degree less than five were duly brought within the power
of legitimate geometry,” (p.169).
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Viète, however, not only asserted his new postulate as geometrical, but
also commented on other methods of construction that were resurfacing at
the turn of the seventeenth century. In regards to shifting rulers, for exam-
ple, Viète described that they are mechanical and not geometrical, despite
their accuracy.34 Viète also gives a pointwise construction of the quadratrix
curve yet does not, unlike Clavius, claim it as a geometrical solution. In
his 1600 publication Apollonius from Gaul, Viète comments on non-planar
constructions from several ancient geometers. Bos translates Viète as saying
that Dinostratus was able to square the circle via the quadratrix curve and
Archimedes via the spiral, “but is the circle thereby geometrically squared?
No geometer would make that proposition.”35 Here, Viète is not only classi-
fying problems as planar and non-planar, but definitively stating that non-
planar solutions are not geometrical. Viète, therefore, not only classified
problems based on their construction, but also demarcated between legiti-
mate and illegitimate geometrical constructions as a consequence of his sup-
plemental postulate.

Johannes Molther, another seventeenth century mathematician, offered
his own interpretation of geometrical exactness in his 1619 work, The Delian
Problem. Molther begins by criticizing the work of other scholars—he con-
demns pointwise constructions of the quadratrix curve and he regards many
constructions as approximate at best, therefore impractical and not geo-
metrical, for geometrical constructions to Molther were rooted in precision
and accuracy. In attempting to construct two mean proportions, Molther
proposes the acceptance of the neusis postulate as the necessary solution,
precisely echoing the work of Viète. Yet Viète provided no argument as to
why the neusis postulate should be accepted, he only claims it as necessary.
Molther, however, justifies his claim, believing it to be just as acceptable as
the use of the Euclidean tools. Indeed, Molther’s construction of the neusis
uses both a straightedge and compass, using both motion and the judgement
of the senses. This, he argues, is exactly what the Euclidean postulates as-
sume, for in constructing both a line and a circle the geometer must move the
required tools and succumb to the judgement of his senses. While Molther’s
point is true, he does not address the issue of demarcating between valid and
invalid geometric constructions, for surely not all geometric constructions of

34For example, Viète describes the construction of a regular heptagon by Francois Foix
de Candale as “accurate, but not geometrical” for its use of a shifting ruler (Bos, p.176).

35Ibid, p.178.
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the motion and judgement of the senses were to be accepted.
Perhaps no early modern geometer had a more rigid interpretation of

geometrical exactness than Johannes Kepler, the famed mathematician and
astronomer. The underlying principle of Kepler’s philosophical view of con-
structions was harmony—a harmonious ratio was the quotient of two lengths
constructible by the Euclidean tools.36 These ratios, Bos asserts, occurred
“in nature as signs of God’s deliberate choices,” and hence to extend the legit-
imacy of construction beyond straightedge and compass was a philosophical,
almost religious wrongdoing.37 In this sense, Kepler imposes a strict interpre-
tation of Commandino’s “considerable sin,” insinuating that any inappropri-
ate solution is both geometrically illegitimate and morally wrong. Yet Kepler
does not provide a detailed argument as to why his strong demarcation rests
solely on the Euclidean tools. Bos states that Kepler sought to “appeal to
authority and tradition,” namely the works of Euclid and Proclus.38 The
entirety of Euclid’s Elements stems from the restriction of constructions of
straight lines and circles, and therefore to extend this restriction would derail
not only Euclid’s work, but the greater field of geometry.

Kepler, like other mathematical scholars, went on to criticize his contem-
poraries for their studies of non-planar constructions. He believed Pappus’
method of hyperbolic constructions, Apollonius’ procedure of forming conics,
and the pointwise construction of the quadratrix curve were both impracti-
cal and imprecise, and therefore rejected these methods of construction as
geometrically illegitimate.39 Additionally, Kepler opposed the incorporation
of algebra into geometric problems. Although reducing these problems to
equations of varying degrees was a powerful and useful tool, this would, at
best, provide an approximation, where the search for precise solutions would
be compromised.

The fifty years between Commandino’s 1589 Collection and Descartes’
1637 Géométrie generated much mathematical activity as geometrical prob-

36Bos calls such ratios “knowable.” The Greeks, however, championed whole numbers,
with little acknowledgment of other types of ratios, such as irrational numbers. Kepler is
therefore taking his interpretation of harmony one step further than the Greeks (p.183).

37Ibid, p.184
38As Bos describes, Euclid provided the proper geometrical constructions through the

restriction to straightedge and compass, and Proclus detailed the arguments to this re-
striction in his commentary of the Elements (p.194).

39The flaw with the conic constructions of Apollonius rests in finding the hyperbola
from the intersection of the cone with the plane (p.188).
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lem solving flourished among early modern mathematicians. Yet, on the
verge of the breakthroughs Descartes provided, Bos notes that the field of
geometrical problem solving still contained three issues regarding the inter-
pretations of legitimacy and exactness. First, the works of the early modern
geometers sparked a growth in the number of constructions beyond the use of
the Euclidean tools. Still, there lacked a precedence among these order, with
hardly any available criteria to distinguish genuinely geometrical construc-
tions.40 Thus, Bos asserts, “the objective of problem solving had become
opaque and the practice lacked a clear direction.”41 Second, while many ge-
ometers recognized the use of algebraic methods in relating problems, equa-
tions, and solutions, the nature of these relations was not well articulated
or understood before Descartes. Third, the field required a more “definite
and refined interpretation of the exactness of constructional procedures” to
help both clarify the differing perspectives and progress the field of problem
solving.42 The necessity to clarify these issues and advance the geometrical
field was the impetus for the mathematical breakthroughs of Descartes.

René Descartes is considered by many to be the catalyst behind modern
mathematics. Born in 1596 in La Haye, France, Descartes received an elite
education at the prestigious Jesuit College in La Flèche, where he was prop-
erly trained in the Classics and humanities.43 He spent much of his life as
a solider and a philosopher, embracing a Catholic faith despite believing in
what were then considered radical and heretical claims. He applied his philo-
sophical inquiries to his mathematics, where he was primarily concerned with
issues of methodology and exactness.44 Consequently, his results in determin-
ing geometrical exactness were much more thorough than his predecessors’.
His 1637 publication of La Géométrie as an appendix to his Discourse on

40Bos notes Willebrord Snellius, the seventeenth-century Dutch mathematician and as-
tronomer, as an exception. Snellius often cites ruler and compass constructions as legiti-
mately geometrical. In regards to the squaring of the circle, he states, a solution had not
been found “authoratively and by ruler and compass according to the rules of the art,”
despite the many solutions that existed (p.220).

41Bos, p.221.
42Ibid, p.221.
43Hollingdale notes that Descartes attended the Jesuit College in France, where his best

philosophical and mathematical insights came not from his classes, but when he was lying
in bed in the morning (p.126).

44Bos notes that the famed La Géométrie was in fact an appendix to his philosophical
treatise Discourse on Method, where he tackled the method of “rightly conducting one’s
reason and seeking the truth in the sciences,” (p.228).
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Method was necessitated, as he saw it, for “a more precise and reasoned
definition of exactness in geometry.”45 Written in the vernacular of French
rather than Latin, Descartes addressed his work to the general public rather
than a small portion of the educated elite. Indeed, the influence of his work
lead many to assert his career as the “the turning point between medieval
and modern mathematics.”46

La Géométrie, divided into three books, served to unify the disciplines
of algebra and geometry, bridging the gap between the mathematics of the
ancient Greeks and the more recent works of Descartes’ contemporaries.47

The first book introduces algebraic terms and notations that are still used
today. Additionally, Descartes provided an algebraic solution to a problem
that appeared in the works of Pappus, where the fourth-century geometer
claimed without proof that the required locus was designed from conic sec-
tions.48 One form of the problem, for instance, was to find the locus of
points such that the product of the distances to two given lines was equal
to the product of the distances to two other given lines. Bos describes Pap-
pus’ problem as “an indeterminate problem whose infinitely many solutions
form a one-dimensional locus.”49 Descartes’ approach was to find a point-
wise construction of the locus by assigning variables, x and y, to the two
unknowns in the final indeterminate equation, with the pairs of variables
being “coordinates of points on the locus.”50 In algebraic terms, the geomet-
ric condition is equivalent to an equation of second degree in x and y that
defines a conic section. The second book, titled On the Nature of Curved
Lines, provides a distinction between two types of curves. Geometrically
acceptable curves were those that were constructed by the intersection of
two lines, “each moving parallel to the one coordinate axis with “commensu-
rable” velocities.”51 Legitimate geometrical curves were those that produced

45Ibid, p.225.
46Burton also claims that Descartes “laid the foundations for the growth of mathematics

in modern times;” indeed, shortly after his death, Newton and other mathematicians
advanced Descartes’ work to lead to the development of calculus (p.337).

47Indeed, Hollingdale provides the context of Descartes’ motivation with the opening
sentence of La Géométrie: “Any problem in geometry can easily be reduced to such terms
that a knowledge of the lengths of certain straight lines is sufficient for its construction,”
(p.131).

48Burton, p.342.
49Bos, p.313.
50Ibid, p.313.
51Burton, p. 343. Perhaps Hollingdale provides a simpler definition: “Geometric curves
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algebraic equations of finite degree. Other curves, such as the quadratrix
and spiral, were deemed mechanical and therefore illegitimate, for they re-
quired “two simultaneous motions whose relation does not admit of precise
determination.”52 Descartes then provides instructions for constructing the
roots of equations of degrees less than six. The third book of La Géométrie
introduces the solutions of equations, with several consciously omitted proofs
to “give others the pleasure of discovering for themselves.”53

Thus the mathematical commentary of both the fourth and fifth centuries
and early modern period stimulated a revival of the search for solutions
for the construction problems of antiquity. Not only did these problems
demonstrate the intellectual fortitude of the Greeks, but they also established
the distinction between legitimate and illegitimate geometric constructions
that would last for the next two millennia.

are those that can be expressed by an algebraic equation (of finite degree) in x and y,”
(p.134).

52Such pointwise methods only provide accurate constructions of a finite number of
points on the curve (Burton, p.343).

53Ibid, p.348.
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Chapter 4

The Proofs of Impossibility

It is known today that none of the three construction problems can be solved
using only the straightedge and compass. The proofs of impossibility of the
three construction problems come from Pierre Wantzel and Ferdinand Linde-
mann, two nineteenth-century mathematicians whose publications brought
the search for solutions to its end. These proofs, however, did not solely
come from two mathematical geniuses who happened to discover what two
millennia of previous mathematicians did not have the right ideas to prove;
rather, they build on previous advancements from both antiquity and the
early modern period. In fact, it was the translation of the three geometric
problems into algebra that ultimately enabled Wantzel and Lindemann to
demonstrate that their required constructions cannot be achieved by ruler
and compass alone.

The earliest argument for the impossibility of the cube duplication and
angle trisection is attributed to Descartes in the seventeenth century, two
hundred years before Wantzel’s proof was published.1 While it was ap-
parently believed among mathematicians since late antiquity that the two
problems could not be solved by the ruler and compass constructions, no one
formalized the notion into a proof. While Pappus, for example, was prepared
to consider the impossibility of the geometric problems in his Collection, he
“nowhere stated the necessity, desirability, or even possibility of giving a
mathematical proof of this impossibility.”2 The early modern geometers, de-

1For a thorough history of the proofs of the cube duplication and angle trisection, see
Jesper Lützen’s paper The Algebra of Geometric Impossibility: Descartes and Montucla
on the Impossibility of the Duplication of the Cube and the Trisection of the Angle.

2Lützen, p.6.
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spite providing their own solutions to the problems, also did not attempt
to provide a proof of impossibility. Why, then, was Descartes the first to
address this issue?

One possible explanation is that a proof of impossibility, by nature, re-
quires a different sequence of logic than proving a theorem or proposition.
Since early antiquity, the mathematical enterprise could be viewed primarily
as a problem-solving activity, and proving a statement is impossible is con-
trary to this end. As Lützen states, “such an impossibility is not a proper
mathematical result, but a sort of meta-statement regarding the problem
solving activity.”3 As both a mathematician and a philosopher, Pappus
was the first of the Greek commentators to blur this distinction—he “mixed
solutions of mathematical problems with discussions about methodological
issues.”4 Thirteen centuries later, the philosopher-mathematician Descartes
would also be interested in the solvability of the geometric problems. In-
fluenced by Pappus, Descartes classified problems based on the methods
required for their solutions, suggesting it was prohibited to solve a planar
problem—by Pappus’s definition—by other means. Thus, to clearly demon-
strate that his construction using conic sections was the correct method for
the solution, he needed to argue that a ruler and compass construction does
not exist.

Yet, to carry out this kind of proof, the geometric problems needed to be
translated into algebra. The method of using algebra to prove a theorem was
not, however, a “trivial matter of course” or a “natural line of argument.”5

Most early modern mathematicians were reluctant to use algebra in proofs.
For example, even in the early seventeenth century there was still an incom-
plete understanding of concepts like negative and complex numbers. Indeed,
when algebraic methods were used in problems, they were used for finding
the proper construction of the problem, but geometric methods were used for
the proof of the correctness of the construction. As Bos states, “an algebra
beset with such restrictions and uncertainties held little promise for geome-
try.”6 In the early modern period of mathematics, algebra problems usually
contained a geometric proof, so the concept of using an algebraic proof for
geometric problems was, in a sense, revolutionary.

3Lützen, p.6,
4Lützen, p.7. He adds that it is therefore “not so surprising that Pappus took up

meta-mathematical questions such as the (un)solvability of problems with given means.”
5Lützen, p.9, 10.
6Bos, p.133.
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The proofs Descartes provides do not, however, accurately give an alge-
braic synthesis of the impossibility of a ruler and compass construction to
the cube duplication and angle trisection.7 His first step was to assign letters
to the known and unknown line segments and to formulate the relations of
the problem into algebraic equations. He would then reduce and rearrange
the equations, leaving an equation in terms of just the unknowns, precisely
the method that led Descartes to the correct equation corresponding to the
two mean proportionals, as given by Hippocrates. Descartes demonstrated
that if the final equation is quadratic than the unknown segments can be
constructed by the Euclidean tools, and thus the problem was planar by
Pappus’ definition. “If the equation is of degree higher than two,” it was
“according to Descartes impossible to solve...by plane means.”8 Later in his
book, Descartes showed that the problems of the cube duplication and angle
trisection lead to cubic equations. Therefore, since problems constructible
by planar means lead to quadratic equations and since the two geometric
problems lead to cubic equations, Descartes asserted that the two problems
cannot be solved by ruler and compass alone. Yet, his logic for this argument
is somewhat convoluted: he went on to prove the converse of the statement,
that if “the final equation is quadratic then the problem can be solved by”
the Euclidean tools.9

Much of the mathematics Descartes puts forth in his La Géométrie would
become fundamental in the development of the theory of solutions of poly-
nomial equations, which in turn helped Wantzel formulate his proof of the
impossibility of the planar constructions. He extensively describes the re-
ducibility of polynomials and the factorization of equations. Specifically,
he considers the case where a given polynomial can be factored into two
quadratic factors. To do this, Descartes instructs to set up a resolvent of the
form p(x) = x4 +px2 +qx+r and to seek binomial factors considered as third
degree equations.10 If such binomial factors can be found, the roots of the
two quadratic factors can be found by straightedge and compass construc-
tions, and thus the problem is plane. Lützen summarizes Descartes’ method
as follows: when the polynomial is determined for the “principal unknown”
with coefficients in terms of the knowns, one carries out several ruler and
compass constructions to determine “new line segments from the givens,”

7Thorough discussions of Descartes’ method can be found in Lützen and Bos.
8Lützen, p.12.
9Lützen, p.14.

10Lützen, p.16.
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reducing the polynomial as much as possible.11 If this produces a quadratic
equation the problem is planar. While Descartes’ results are remarkable, he
nevertheless “did not develop an explicit algebraic formulation of the process
of construction by ruler and compass.”12 Moreover, Descartes lacked all the
algebraic tools that would eventually be developed to finish the proofs.

It is important to take stock of the many contributions Descartes gave
to impossibility of geometric constructions, as well as some of his shortcom-
ings.13 His contributions, among many, include formulating the impossibil-
ity of the cube duplication and angle trisection as theorems that should be
proved, rather than just empirical statements. Additionally, he attempted his
own geometric proof, “translated the geometric problems into algebraic ones
concerning the solution of polynomial equations,” and studied several meth-
ods to factorize polynomials.14 For these advancements, the mathematical
field is indebted to Descartes and his discoveries. Yet, he did not provide the
algebraic proof necessary to complete the study of the geometric problems.
He “did not establish in a satisfactory way that...[the geometric]constructions
could only solve quadratic equations,” and he “did not stress the relation be-
tween the algebraic process of factorization and geometric constructions but
only focused on the construction of the final equation.”15 It was these defi-
ciencies, together with the lack of extensive knowledge of field theory, which
led to an incomplete proof of impossibility.

Two centuries after Descartes, the French mathematician Pierre Wantzel
would use these algebraic advancements in his proofs of impossibility of the
cube duplication and angle trisection constructions. What follows is an ac-
count of Wantzel’s work translated into modern mathematical language. Yet,
before turning to Descartes’ coordinate geometry in the proofs of impossi-
bility for the construction problems, it is important to first examine several
algebraic definitions and theorems that will be used later in the proofs. Many
of these properties stem from the German mathematician Ernst Steinitz,
whose influential paper on the algebriac theory of fields would become an
important step in the development of abstract algebra.16 First, a field is an

11Lützen, p.19.
12Lützen, p.21.
13Lützen gives an extensive list of Descartes’ contributions and failures, p.26-7.
14Lützen, p.26.
15Lützen, p.27.
16Steinitz’s paper, Algebraische Theorie der Körper, was published in 1910 in the Ger-

man periodical Journal für die reine und angewandte Mathematik.
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algebraic structure given by (F,+, ·), a set F with two binary operations +
and ·, that satisfies the following three conditions:17

• (F,+) is an abelian group

• (F −
{

0
}
, ·) is an abelian group

• The distributive law a · (b+ c) = a · b+ b · c holds for all a, b, c, d ∈ F .

This leads to the following definitions.

Definition: A field E is an extension field of a field F if F ⊆ E and the
field operations on E restrict to the field operations on F .

A field E is said to be a vector space over a field F if E is an Abelian
group under addition and the following conditions hold.18

1. a(v + u) = av + au
2. (a+ b)v = av + bv
3. a(bv) = (ab)v
4. 1v = v

for all a, b ∈ F and u, v ∈ E.19 The field axioms show that these proper-
ties hold whenever E is an extension field of F .

Definition: Let E be an extension field of a field F . Then E has degree
n over F , written as [E : F ]= n, if E has dimension n as a vector space over
F .

Definition: Let E be an extension field of a field F and let a ∈ E. Then
a is algebraic over F if a is the zero of some polynomial in F [x]. Also, a is
transcendental over F if there is no polynomial p(x) ∈ F [x] with p(a) = 0.

Proposition: Let [E : F ]= n. Then all elements in E are algebraic over F .

17Gallian defines a field as “simply an algebraic system that is closed under addition,
subtraction, multiplication, and division (except by 0),” where all the usual properties of
these operations hold, p.176.

18Steinitz, p.172.
19Gallian, p.241.
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Proof: Let [E : F ]= n with a ∈ E. Then the set
{

1, a, a2, . . . , an
}

has
n+ 1 elements and therefore is linearly dependent. Thus, there exists coeffi-
cients c0, . . . , cn ∈ E such that cna

n + cn−1a
n−1 + · · ·+ a0 = 0, so a is a root

of the polynomial p(x) = cnx
n + · · ·+ c0 ∈ F [x]. Hence all elements in E are

algebraic over F .

Definition: Given any field F ⊆ R with a ∈ R, F (a) is the smallest field
containing F and a.

Proposition: If ∆ ∈ F , with ∆ not a square in F , then F (
√

∆) ={
f + g

√
∆|f, g ∈ F

}
.

Proof: First
{
f+g

√
∆|f, g ∈ F

}
is contained in F (

√
∆) by the definition

of a field. So it suffices to show that
{
f + g

√
∆|f, g ∈ F

}
is itself a field. To

demonstrate closure under multiplication, consider the product of

(f + g
√

∆)(f ′ + g′
√

∆)

which, when expanded, gives

ff ′ + fg′
√

∆ + f ′g
√

∆ + gg′∆

which equals

ff ′ + gg′∆ + (fg′ + f ′g)
√

∆

which is in F (
√

∆). Thus F (
√

∆) is closed under multiplication. The addi-
tive inverse is given by −(f + g

√
∆), since f + g

√
∆ + (−f − g

√
∆) = 0. To

demonstrate a multiplicative inverse, it might be tempting to use (f−g
√

∆).
However,

(f + g
√

∆)(f − g
√

∆) = f 2 − g2
√

∆

which, if equal to 0, would imply that f 2 = g2∆, or ∆ = (f
g
)2, which con-

tradicts ∆ not being a square. So the correct multiplicative inverse is given
by

1

f 2 − g2∆
(f − g

√
∆) =

f

f 2 − g2
− g

f 2 − g2

√
∆
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since

(f + g
√

∆)

(
1

f 2 − g2∆
(f − g

√
∆)

)
= 1

and thus the multiplicative inverse is in F (
√

∆).

Corollary : If F1 = F (
√

∆) with ∆ ∈ F not a square, then [F1 : F ] = 2.

Proof :
{

1,
√

∆
}

spans F1. A typical element is a + b
√

∆, with a, b ∈ F .

If a+ b
√

∆ = 0 with b 6= 0, then
√

∆ = −a
b
, or ∆ = (−a

b
)2, which contradicts

∆ not being a square. Thus
{

1,
√

∆
}

is linearly independent over F , and
hence forms a basis. Thus dim F1 = 2, or [F1 : F ]=2.

Definition: A “tower” of fields F1 ⊆ F2 ⊆ ... ⊆ Fk−1 ⊆ Fk is a finite
sequence of field extensions Fj ⊆ Fj+1 where j = 1, . . . , k − 1.

These lead to the following theorems.

Theorem 1 If E ⊆ F ⊆ K is a “tower” of fields, then [K : E] = [K :
F ][F : E].20

Proof : Say [F : E] = r and
{
α1, . . . , αr

}
is a basis and [K : F ] = s

with
{
β1, . . . , βs

}
a basis. Let γ ∈ K, then γ = C1β1 + · · · + Csβs for

some Ci ∈ F . Then Ci = bi1α1 + · · · + birαr for some bij ∈ F . So γ =
(b11α1 + · · · + b1rαr)β1 + (bs1α1 + · · · + bsrαr)βs, which, when expanded,
equals

bi1α1β1 + bi2α2β2 + · · ·+ birαrβ1 + · · ·+ bsrαrβs

So
{
αiβj|1 ≤ i ≤ r, 1 ≤ j ≤ s

}
spans K over E. If

b11α1β1 + · · ·+ b1rαrβ1 + · · ·+ bsrαrβs = 0

then

(b11α1 + · · ·+ b1rαr)β1 + · · ·+ (bs1α1 + · · ·+ bsrαr)βs = 0.

20As Gallian states, if K is a finite extension field of the field F and F is a finite extension
of the field E, then K is a finite extension of field E, p.259.
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Since
{
β1, . . . , βs

}
is a basis and thus linearly independent, b11α1 + · · · +

b1rαr = 0,. . . ,bs1α1 + · · ·+ bsrαr = 0. Since
{
α1, . . . , αr

}
is linearly indepen-

dent in F over E, it follows that bij = 0.
Conclusion:

{
αiβj|1 ≤ i ≤ r, 1 ≤ j ≤ s

}
is a basis for K over E. Thus

[K : E]= r · s = [K : F ][F : E]. This proves the theorem.

Theorem 2 (Primitive Element Theorem) If Fn is a finite extension of a
field F ⊇ Q, then there exists an element a in Fn such that Fn = F (a).21

The link between this field theory and the proofs of the geometric con-
structions comes in the form of irreducible polynomial equations.

Definition: The irreducible polynomial of an algebraic element a over Q
is p(x) ∈ Q[x] of smallest degree with p(a) = 0.

This can be illustrated with the following example: Say k =
√

1 +
√

2
So k2 = 1 +

√
2 (k2 − 1) =

√
2, so (k2 − 1)2 = 2, which expanded gives

k4 − 2k2 + 1 = 2. Therefore k4 − 2k2 − 1 = 0. The claim is that p(x) =
x4 − 2x2 − 1 ∈ Q[x] is the irreducible polynomial. It remains to show that
p(x) cannot be factored and thus is the irreducible polynomial. First, try
factoring p(x) into the form (x+ a)(x3 + bx2 + cx+ 1).Expanding this gives

x4 + bx3 + cx2 + x+ ax3 + abx2 + acx+ a

which is equivalent to

x4 + (a+ b)x3 + (ab+ c)x2 + (ac+ 1)x+ a

and therefore a+ b = 0, ab+ c = −2, ac+ 1 = 0, and a = −1. Substituting
backwards obtains c = −1 and b = 3, but −1+3 6= 0, and thus a factorization
of this kind has no rational roots. Now, try factoring p(x) into the form
(x2 + ax+ b)(x2 + cx+ d). Expanding this gives

x4 + cx3 + dx2 + ax3 + acx2 + adx+ bx2 + bcx+ bd

which is equivalent to

x4 + (a+ c)x3 + (b+ d+ ac)x2 + (ad+ bc)x+ bd

21The proof of the Primitive Element Theorem is quite extensive, but a thorough ex-
amination can be found in Iain T. Adamson’s Introduction to Field Theory.
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and therefore a+ c = 0, b+ d+ ac = −2, ad+ bc = 0, bd = −1. This implies
a = −c, which substituted into the third equation gives −cd + bc = 0, or
(b− d)c = 0. This implies either b− d = 0 or c = 0. If b− d = 0, then b = d,
which cannot be true since bd = −1. If c = 0, then b + d = −2, and since
bd = −1, then −2b+ b2 = −1. Applying the quadratic formula gives

b =
−2±

√
4 + 4

2

which is not an element of Q. Therefore a factorization of this kind has no
rational roots. Thus p(x) = x4−2x2−1 ∈ Q[x] is the irreducible polynomial.

Proposition: If a is algebraic over F with irreducible polynomial p(x) of
degree n, then [F (a) : F ] = n.

Proof :
{

1, a, a2, . . . , an−1
}

is a basis for F (a) over F .

With this algebraic background in hand, one can supply a modern account
of the solutions provided by Wantzel and Lindemann. First, it is important to
characterize what points can be constructed by a straightedge and compass
in the Cartesian plane. That is, addressing the question: Given a unit of
distance, or a segment of length one, and the coordinate axes with the origin,
what points can be constructed by a straightedge and compass?22

The first claim is that any point (a, b) can be constructed with a, b ∈ Q.
To show this, it is sufficient to construct (a, 0), (0, b), or even all a ∈ Q along
one line. Thus, suppose a = m

n
in lowest terms. Since a unit length is as-

sumed, a segment AB of length one exists and hence segments of all integer
lengths m can be constructed. It therefore remains to show that a segment of
length 1

n
exists. This has been proved in Chapter 2 for the case n = 3, but the

general argument can be described as follows. Take segment AB. From A, lay
off points C1, C2, . . . , Cn such that AC1 = C1C2 =, . . . ,= Cn−1Cn. Join BCN .
Construct parallels C1B1, C2B2, . . . , Cn−1Bn−1 to BCn, with B1, B2, . . . , Bn−1

on AB. AB1 then has length equal to 1
n
. Thus, it is possible to construct

any (a, b) ∈ Q2. This leads to the following theorem.

22A thorough examination of the abstract algebra and field theory that led to the proofs
of impossibility can be found in Gallian’s Contemporary Abstract Algebra and Morandi’s
Field and Galois Theory.
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Theorem 3 If α is constructible over Q, then there exists a tower of fields
Q = F0 ⊆ F1 ⊆ . . . ⊆ Fn where for each i either Fi+1 = Fi or Fi+1 = Fi(

√
∆i)

where ∆i ∈ Fi not a square and α ∈ Fn.

Proof : Each step of a construction will involve new points generated by
the intersections of either two lines, a line and a circle, or two circles defined
by previously constructed points. Considering each of these cases in turn
yield the following.

Case 1: The Intersection of Two Lines

If it is known that one can construct with the Euclidean tools any (a, b) ∈
F , assume L1 and L2 are two lines such that L1 : (a1, b1) and (c1, d1) and
L2 : (a2, b2) and (c2, d2) with ai, bi, ci, di ∈ F . The lines can be expressed in
point-slope form as

L1 : y − b1 =

(
d1 − b1
c1 − a1

)
(x− a1)

L2 : y − b2 =

(
d2 − b2
c2 − a2

)
(x− a2)

with each having the form

A1x+B1y = C1

A2x+B2y = C2.

Using determinants to solve for the point of intersection, (x, y), gives

x =

det

(
C1 B1

C2 B2

)
det

(
A1 B1

A2 B2

)
and

y =

det

(
A1 C1

A2 C2

)
det

(
A1 B1

A2 B2

)
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and therefore both x, y ∈ F and thus (x, y) ∈ F .
Thus, the intersection of two lines has rational coordinates in the same

field as the two lines. Or, as Gallian states, “two lines in F intersect in a
point in the plane of F .”23

Case 2: The Intersection of a Line and a Circle

Assume L is a line such that L : (a, b) and (c, d) with a, b, c, d ∈ F and C
is a circle with center (p, q) and radius r with p, q, r ∈ F

So L can be expressed as

L : Ax+By − C (4.1)

for some A,B,C,D ∈ F and C can be expressed as

C : (x− p)2 + (y − q)2 = r2 (4.2)

In (4.1), assuming B 6= 0 and solving for y gives

y = −A
B
x+

C

B
(4.3)

which substituted into (4.2) gives

(x− p)2 +

(
−A
B
x+

C

B
− q2

)
= r2

Expanding this gives

αx2 + βx+ γ = 0

for some α, β, γ ∈ F . Applying the quadratic formula gives

x =
−β ±

√
β2 − 4αγ

2α

Substituting this back into (4.3) gives

y = −A
B

(
−β ±

√
β2 − 4αγ

2α

)
+
C

B

23Gallian, p.264.
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Define ∆ as β2 − 4αγ.
So if ∆ is not a square in F , one needs to go to a bigger field to get the

coordinates of the intersection.
Thus, for the intersection of a line and circle, if ∆ is not a square in F it

is required to go to some field F (
√

∆).

Case 3: The Intersection of Two Circles

The intersection of two circles will produce at most two points of inter-
section, unless the circles are tangent, in which case they intersect at one
point. Suppose the two circles, C1 and C2, intersect at two points. Define
the circles as

C1 : (x− h1)
2 + (y − k1)

2 = r2
1

C2 : (x− h2)
2 + (y − k2)

2 = r2
2

Expanding these equations gives

C1 : x2 + y2 − 2h1x− 2k1y + h2
1 + k2

1 = r2
1 (4.4)

C2 : x2 + y2 − 2h2x− 2k2y + h2
2 + k2

2 = r2
2 (4.5)

Subtracting (4.4) from (4.5) gives

2(h1 − h2)x+ 2(k1 − k2)y − h2
1 + h2

2 − k2
1 + k2

2 = r2
2 − r2

1

which, together with (4.4), gives the intersection of a circle and a line. Thus,
the intersection of two circles yields the same results as the intersection of a
line and a circle. �

Let Q = F0 ⊆ F1 ⊆ . . . ⊆ Fn be a tower as in Theorem 3. For each i,
Fi+1 is a vector space over Fi, so [Fi+1 : Fi]=1 if Fi+1 = Fi and [Fi+1 : Fi] = 2
if Fi+1 = Fi(

√
∆i).

Corollary : If α is constructible, [Q(α) : Q]= 2k for some nonnegative
integer k.
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Proof : Say

F0 = Q ⊆ F1 ⊆ F2 ⊆ ... ⊆ Fn

comes from a construction and α ∈ Fn. It is known that [Fi+1 : F1]=1 or 2
for all i. By Theorem 3,

[Fn : Q] = [Fn : Fn−1][Fn−1 : Q]

which equals

[Fn : Fn−1][Fn−1 : Fn−2][Fn−2 : Q]

which equals

[Fn : Fn−1][Fn−1 : Fn−2]...[F1 : Q],

with each dimension equalling 1 or 2. So [Fn : Q] is thus 2l for some l. Then
Q ⊆ Q(α) ⊆ Fn, so [Q(α) : Q] divides 2l, and hence [Q(α) : Q] = 2k for some
nonnegative integer k, with k ≤ l. �

An application of this field theory can be used to demonstrate the impos-
sibilty of the three construction problems.24 First, consider the duplication
of the cube. Given a cube of volume 1, the problem compels the geometer
to construct a cube of volume 2, thus having an edge of length equal to 3

√
2.

The problem is thus reduced to determining if a length of 3
√

2 is constructible
with a straightedge and compass. In this case, x3 − 2 = 0 is the irreducible
equation. To show this equation is irreducible involves the use of the Rational
Roots Test, described as follows.

Claim: If anx
n + ... + a1x + a0 = 0 with each ai ∈ Z has a rational root

x, then x = p
q

in lowest terms where q divides an and p divides a0.

Proof : Substitute x = p
q

into the polynomial equation. Then

an

(
p

q

)n
+ ...+ a1

(
p

q

)
+ a0 = 0.

Multiplying both sides by qn gives

anp
n + an−1p

n−1q + ...+ a0q
n = 0, (4.6)

24An explanation of these proofs can be found in Gallian, p.265 and Morandi, p.145.
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which is equivalent to

anp
n = −q

(
an−1p

n−1 + ...+ a0q
n−1
)
.

Therefore, since q and p are relatively prime, q must divide an. Likewise, (7)
is equivalent to

a0q
n = −p

(
anp

n−1 + ...+ a1q
n−1
)
.

Again, since q and p are relatively prime, p must divide a0.
In the case of the given equation, it follows from the Rational Roots Test

that the only rational roots would be x = ± 1 or ±2. Substituting each of
these into x3−2 = 0 yields: x = 1 gives −1 6= 0, x = −1 gives −3 6= 0, x = 2
gives 6 6= 0, and x = −2 gives −10 6= 0. Since none of the potential rational
roots work, x3 − 2 = 0 is the irreducible equation. Thus [Q( 3

√
2) : Q]=3,

which is not equal to 2s for some s. Therefore 3
√

2 is not constructible, and
the duplication of the cube is impossible with straightedge and compass.

The impossibility of the trisection of an angle can be proved with a par-
ticular example, because if there were a general construction, it would have
to hold for this case. In order to trisect an angle of 60◦, the number cos 20◦

must be constructible. The proof makes use of the trigonometric identity

cos 3θ = 4 cos3 θ − 3 cos θ

with θ = 20◦. Therefore

1

2
= 4 cos3 20◦ − 3 cos 20◦

Substituting cos 20◦ = x gives 1
2

= 4x3 − 3x, or 1 = 8x3 − 6x. Thus,
8x3 − 6x − 1 = 0 is a polynomial equation over Q satisfied by x. To show
this equation is irreducible also requires the Rational Roots Test, which gives
the potential rational roots as x = ±1,±1

2
,±1

4
, and ±1

8
. Substituting each

of these into the polynomial yields: x = 1 gives 1 6= 0, x = −1 gives −3 6= 0,
x = 1

2
gives −3 6= 0, x = −1

2
gives −1 6= 0, x = 1

4
gives −19

8
6= 0, x = −1

4

gives −3
8
6= 0, x = 1

8
gives −111

64
6= 0, and x = −1

8
gives 17

64
6= 0. Since none of

the potential rational roots work, 8x3−6x−1 = 0 is the irreducible equation.
Therefore, [Q(cos 20◦) : Q] = 3, which is not equal to 2s for some s.

Thus cos 20◦ is not constructible with the Euclidean tools, and the general
trisection of an angle problem is impossible.

The proof of the squaring of the circle involves the use of theorem and a
corresponding corollary:
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Theorem 4 (Lindemann-Weierstrass Theorem)25 Let α1, . . . , αm be distinct
algebraic numbers. Then the exponentials eα1 , . . . , eαm are linearly indepen-
dent over Q.26

Corollary : The numbers π and e are transcendental over Q.

Proof of the corollary : Suppose e is algebraic over Q. Then there exist
ri ∈ Q such that r0 + r1e

1 + · · · + rne
n = 0. This implies e0, e1, . . . , en are

linearly dependent over Q. But, by choosing m = n+ 1 and αi = i− 1, this
dependence contradicts the Lindemann-Weierstrass Theorem, and hence e is
transcendental over Q. If π is algebraic over Q, then so is πi. This implies e0

and eπi are linearly independent over Q, which cannot be true since eπi = −1.
Therefore, π is transcendental over Q. �

Hence, the impossibility of the squaring of the circle can also be proved
with a specific example. Consider a circle of radius 1. The problem compels
the geometer to construct a square with area π, thus having sides of length√
π. But, since π is transcendental over Q, a segment with length

√
π cannot

be constructed by the Euclidean tools since it is not algebraic of degree of a
power of 2.27

At last, the three construction problems of antiquity had reached their
end. It is tempting to assign Wantzel and Lindemann the credit of completing
the search for planar solutions. While this bears some truth—they did, in
fact, publish the proofs of impossibility—their work serves as a culmination
of mathematical progress over the course of nearly two thousand years, from
the beginnings in ancient Greece, through the early modern period, and
into the nineteenth century. Countless mathematicians helped advance the
mathematical enterprise from its roots in Euclidean geometry to the field
theory necessary to state the proofs of impossibility sketched in this thesis.

25The proof of this theorem is also quite extensive, but a comprehensive account can be
found in An Alternative Proof of the Lindemann-Weierstrass Theorem by Beukers et al.,
1990.

26This is an alternative version of the theorem given by Morandi, since it is “a little
easier to prove than the original,” (p.134). He states the original, equivalent theorem on
p.138 as follows: If α1, . . . , αm are Q-linearly-dependent algebraic numbers, then the expo-
nentials eα1 , . . . , eαm are algebraically independent, hence there is no non-zero polynomial
f(x1, . . . , xm) ∈ Q[x1, . . . , xm] with f(eα1 , . . . , eαm) = 0.

27In fact, it is not algebraic at all.
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Their contributions are a testament that mathematics transverses cultures,
languages, and time. The search for solutions, in any discipline, is not a
finite process but an ongoing pursuit of knowledge and truth.

It is important to assess exactly what the solutions of these geometric
constructions have taught the mathematical world. First, mathematics is a
communal activity. Indeed, Plato’s Academy was founded as a place where
scholars could gather and discuss ideas, educating many great mathemati-
cians in the process. Yet this mathematical community comes with interest-
ing dynamics, where many of the best advancements result from challenging,
contested environments. In ancient Greece, for example, scholars chastised
each other over the use of mechanical constructions. This dispute would
continue in the early modern period, where mathematicians disagreed over
issues such as the acceptance of a neusis postulate and a new construction
of a quadratrix curve. Despite these disagreements, or perhaps because of
them, the mathematical field rapidly developed, attracting the attention of
many of the world’s best scholars.

Interpreted literally, the three problems of antiquity prove three seem-
ingly basic facts about geometric constructions: using only the Euclidean
tools, a cube cannot be doubled, a general angle cannot be trisected, and a
circle cannot be squared. Yet the importance of these problems does not rest
in these answers, but rather in the mathematics they generated. The search
for solutions sparked the mathematical enterprise of the ancient Greeks, with
each scholar seeking to advance the work of the preceding generation. The
revival of this enterprise in the Western world led to the developments of
calculus, field theory, linear algebra, and more. While twenty-first century
students may never encounter the three geometric construction problems,
they will undoubtedly come to know the mathematical fields that grew out
of the many centuries of progress. The spirit of these geometric construc-
tions lives on today, educating and inspiring generation after generation of
mathematicians, just as they had two thousand years ago.
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