oric Codes

John B. Little

Department of Mathematics and Computer
Science, College of the Holy Cross

little@mathcs.holycross.edu
Discrete Math Day at Holy Cross

November 11, 2006



Outline of Talk

1. Coding theory basics
2. Toric codes

3. Multivariate Vandermonde matrices and es-
timating the minimum distance

4. Codes from simplices

Joint work with Hal Schenck (Texas A+M),
and undergrad students (Ryan Schwarz HC '05,
Alex Simao, HC '08).

[1] -, R. Schwarz, On m-dimensional toric codes,
arXiv/cs.IT/0506102 (to appear, AAECC)

[2] -, H. Schenck, Toric surface codes and
Minkowski sums, arXiv/math.AG/0507598 (to ap-
pear, SIAM J. Disc. Math.)



§1. Coding Theory Basics

A fundamental problem in coding theory is the
construction of codes with ‘“good” error-control
properties.

e \We'll consider “linear block codes’ — vec-
tor subspaces C of ]Fg" for some n.

e parameters: n, k = diqu((J),

d= min d(xz,y) = min_weight
x#yeC () xF+=0el’ ght(z)

(Hamming minimum distance/weight)

ot = Ld_TlJ = all errors of weight <t can be
corrected by ‘“nearest neighbor decoding”

e Good codes: k/n not too small (so not
extremely redundant), but at same time d
or d/n not too small.



Reed-Solomon codes

Pick a primitive element a for Fy (i.e. genera-
tor of the cyclic multiplicative group of field),
and write the nonzero elements of Iy as

l,a,...,a97 2
Let L, = {f € Fy[x] : deg f < k}. Then
ev: L — ]Fg_l
foe (FQD), (@), .., f(@?2))

is linear and one-to-one if kK < g. The image is
called RS(k,q).

All f of degree < k have at most £ —1 roots in
Fq (and some have exactly that many)

>d=(¢g—1)—(k—-1)=n—-k+1.
(Singleton bound: d<n—-k+1.)



An Example

Using the standard monomial basis for Lg:

{(1,z,2°,23,... ,:ck_l}

The Reed-Solomon code RS(3,16) (parame-

ters: n =15,k = 3,d = 13 over Fig, 5o 163 =
4096 distinct codewords) has generator matrix:

1 1 1 ... 1 1 ... 1
G pu— 1 a a2 o o a7 a8 « o e a14
1 a2 a4 e o o a14 a e« o o a13

(means: the rows of G form a basis for C =
RS(3,16)).



How Reed - Solomon Codes are
Used

Reed-Solomon codes are among the most use-
ful codes in engineering practice in situations
where errors tend to occur in “bursts’ rather
than randomly.

RS(3,16) has d = 13, corrects any error vector
of weight < L132_1J = 6 in a received word over
Fi6 = F3. A “burst” of up to 20 consecutive
bit errors would affect at most 6 of the sym-
bols of the message thought of as elements
of F1g. RS(3,16) can correct any 20 or fewer

consecutive bit errors in a codeword.

Also very efficient algebraic decoding algorithms
(Berlekamp-Massey).

Basis for the error-control coding used, for ex-
ample, in the CD audio system, in communi-
cations with deep-space exploration craft like
Voyager, etc.



§2. Toric codes

Introduced by J. Hansen ~ 1997. Elementary
description:

e Let P be an integral convex polytope in
R™ m>1.

e Points S8 in the finite set PNZ™ correspond
to monomials zf (multi-index notation)

e Let Lp = Span{zf : g€ PNZ™}.

e Define

ev:Lp — Fq(q_l)m

fo= (f() iy e @EH™)

Image is the toric code Cp(Fy).

Note RS(k,q) is the case P = [0,k — 1] C R
since Ly = Span{1,z,...,z" 1},



Why are these interesting?

e Have many properties parallel to RS codes,
e.g. they are “"m-dimensional cyclic’ codes
(set of codewords is closed under a large
automorphism group).

e Computer searches by D. Joyner (USNA)
~ 2000 showed that some very good m = 2
toric codes exist (better than any previ-
ously known codes in standard databases).

e A number of other isolated very good ex-
amples found too.



Searching for good toric codes?

Theorem 1 ([1) ] Let P, P’ be polytopes as
above.

1. If P and P’ are lattice equivalent polytopes
then Cp(Fy) and Cpi(Fy) are monomially
equivalent codes.

2. Similarly, viewing [0, q—2]""NZ™ as (Zq-1)™,
if S = PNZ"™ and S'" = T(S) for some
T = AGL(m,Z,;—1), the resulting evalua-
tion code from S’ is monomially equivalent
to CP(Fq).

Monomial equivalence: There is an n X n per-
mutation matrix 1l and a n X n invertible di-
agonal matrix Q such that G/ = GQI; implies
that parameters are the same.

Note: In the second case, S’ may not be P'nz™
for a convex polytope P'.



Small needles in huge haystacks

For m = 3, ¢ = 5, for instance, using the usual
cycle index polynomial for G = AGL(3,7Z4) we
can compute the generating function for the
number of G-orbits on subsets of Z3 of size k:

1424 22° 4 423 + 162* + 372° +
1472% + 49827 + 21282°% 4 8790z° +
39055210 4 165885211 +
678826x12 + 2584627z13 + - ..

The “"middle term” here is:

333347580600x°32

“Most” of these subsets give quite uninterest-
ing codes. But for instance, one of the 2128
orbits of size k = 8 consists of codes with
d = 42 (better than best previously known
d = 41 according to Brouwer’s table). Clearly
need some other tools(!)



Tools from Algebraic Geometry

The case m = 2 is connected with the theory
of toric surfaces.

Main results of paper Toric surface codes and
Minkowski sums ([2]) show that for ¢ suffi-
ciently large, d(Cp(Fy)) can be bounded above
and below by looking at subpolygons P/ C P
that decompose as Minkowski sums.

Theorem 2 Let/{ be the largest positive inte-
ger such that there is some P’ C P that decom-
poses as a Minkowski sum P' = P+ Po+-- -+ P,
with nontrivial P;. For all ¢ >> 0, there is some
P’ C P of this form such that

/
d(Cp(Fg)) > > d(Cp.(Fg)) — (£ — 1)(g — 1)
1=1

10



Ideas behind this

The polygon P specifies a normal fan > =
> (P), hence an abstract toric variety X = X5,
and a line bundle £ on X. Subpolytopes F;
correspond to subspaces of HO(X, ).

Minkowski-reducible subpolygons <« reducible
sections (Newton polygon of product of poly-
nomials is a Minkowski sum).

Hasse-Weil upper and lower bounds for a curve
Y:

g+ 1—-29(Y)/a < |Y(Fg)| <qg+1+429(Y)/q

= when ¢ > (a crude but explicit lower bound),
reducible curves with £ components must have
more Fg-rational points than those with m < ¢
components.

11



An Example

Consider P as below

P C [0,q — 2]? for all ¢ > 5.

Note that P contains
P’ = conv{(1,0),(2,0),(1,2),(2,2)}
(= P1 + P>, + P3, P; line segments) and
P" = conv{(1,0),(1,1),(3,2),(3,3)}

(similar). No other decomposable Q C P with
more than three Minkowski summands, and
no Minkowski summands with interior lattice
points. Theorem 1 above =

d(Cp(Fg)) > (¢—1)* —3(g — 1)
for ¢ > #(P) +3 = 12.



Example, cont.

Both subpolygons give rise to reducible curves
on the corresponding toric surface. From P’
we obtain curves z(x —a)(y —b)(y —c) = 0. If
a,b,c € Fy and b # ¢, then s has 3(¢ —1) — 2
zeroes in (FF)2. Hence,

d(Cp(Fg)) < (¢ — 1) —3(g—1) +2.

Computations using Magma show that

d(Cp(F5)) =60 s, 42 _-3.442=06
d(Cp(F7)) =20 ws. 6°—3-64+2=120
d(Cp(Fg)) =28 ws. 7°—-3-74+2=230
d(Cp(Fg)) =42 wvs. 82 —-3-8+2 =42
d(Cp(F11)) =72 wvs. 10°-3.1042=72.
The dimension is k = #(P) = 9 in each case

((*) code over [y is best known for n = 16,k =
9).
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The case g = 8

We may ask: Where does a codeword with
49 — 28 = 21 zero entries come from? Magma:
exactly 49 such words. One of them comes,
for instance, from the evaluation of

x + :z:3y3 + y2 x(1+ 50293 + 5136y2)
z(1 + 2z%y> + (2%y>)3)

Here congruences are mod (z’ — 1,y — 1), the
ideal of the [Fg-rational points of the 2-dimensional
torus. So 1 + z2y3 + (22y3)3 has exactly the
same zeroes in (F§)? as z + z3y> + 2.

14



The case q = 8, continued

1 + w4+ u3 is one of the two irreducible poly-
nomials of degree 3 in Fs[u], hence

Fg & Folu] /(1 4 u + u3).
If B is a root of 1 4+ v+ u3 = 0 in Fg, then
14 22y3 + (22y3)3 =
(z2y> - B)(z?y> — B2)(z%y> — B*)
and there are exactly 37 = 21 points in (F%)?
where this is zero. Still a sort of reducibility
that produces a section with the largest num-

ber of zeroes here, even though the reducibility
only appears when we look modulo the ideal

(@’ —1,y" —1) (V).

Similar phenomena in many other cases for
small gq.

15



§3. Enter the Vandermonde ma-
trices

Now turn to m-dimensional toric codes, any
m > 2.

Square submatrices of the generator matrix
G for a Reed-Solomon code are usual (one-
variable) Vandermonde matrices:

(111

ajl a]Q .o a]k

K(ajl:)k—l (ajz:)k—l (ajk:)k—lj

(Well-known and standard observation for study-
ing these codes — implies the rows of G are
linearly independent, for instance.)

16



Multivariate generalizations

Let P be an integral convex polytope, and sup-
pose PNZ™ = {e(i) : 1 < i < #(P)}, listed in
some particular order. Let S = {p; : 1 <j <
#(P)} be any set of #(P) points in (F;)™,
also ordered.

Define V(P;S), the Vandermonde matrix as-
sociated to P and S, to be the #(P) x #(P)
matrix

V(P;S) = (pj-(i)> ,

where pj(i) is the value of the monomial z¢(%)
at the point p;.

17



An Example

Let P = conv{(0,0),(2,0),(0,2)} in R?, and
S = {(=;,y;)} be any set of 6 points in (Fy)=.
For one particular choice of ordering of the
lattice points in P, we have V(P;S) =

(1 1 1 1 1 1
1 T2 3 T4 5 T
yi Y2 Y3 Y4 Ys Y6
2 3 22 22 @2 a3

L1Yir T2Y2 T3Y3 T4Y4 IT5Ys TeY6

\ ¥y ¥3 Y3 vy:  vyE Y2

18



Estimating d of a toric code
We have the following result:

Theorem 3 Let P C R™ be an integral con-
vex polytope. Let d be a positive integer and
assume that in every set T C (F;)™ with |T| =
(¢g—1)™—(d—1) there exists some S C T with
|S| = #(P) such that detV(P;S) # 0. Then
the minimum distance satisfies d(Cp) > d.

Idea of proof: For all S, detV(P;S) # 0 =
the homogeneous linear system obtained the
generator matrix, in columns corresponding to
S, has only the trivial solution so there are no
nonzero codewords with (¢g—1)" —(d—1) zero
entries. Hence every nonzero codeword has
> d nonzero entries.

19



§4. Codes from simplices

Consider Cp,(,,) for Py(m) an m-dimensional
simplex of the form

Py(m) = conv{0, leq,...,Llen},

where the e; are the standard basis vectors
in R™. The monomials corresponding to the
(mjﬁ) integer lattice points in Py(m) are all of
the monomials in m variables of total degree
< ¢. (The corresponding Vandermonde matri-
ces arise in the study of multivariate Lagrange
interpolation using polynomials of bounded to-
tal degree.)

20



Simplicial configurations — an ex-
ample

Need to identify S for which det(V (Py(m); S)) #
0.

PR L R QR
!!'\')!(*)!-hl(rl!m

1 a aloBa*a”ab

A 2-dimensional simplicial configuration of or-
der 2 in (Fg)2.

21



Definition

Definition 1 If m = 1, an ¢th order simplicial
configuration is any collection of (1#) dis-
tinct points in F;. For m > 2, we will say that

a collection S of (mj'£> points in (Fy)™ is an
m-dimensional £th order simplicial configura-
tion if the following conditions hold:

1. For some 1, 1 < 1 < m, there are hyper-
planes x; = a1,x; = ap,...,x; = ay41 SUCh
that for each 1 < j3<{¢+4 1, S contains ex-
?gtliv <m—j1:|—13—1> points with z; = a;. (Note

a

+o6 Tl m-o145-1
OEESIAr D

by a standard binomial coefficient identity.)

2. Foreachj, 1 <j3</{+41, the points in x; =
a; form an (m — 1)-dimensional simplicial
configuration of order 57 — 1.

22



Some observations

Let S be an m-dimensional ¢th order simpli-
cial configuration consisting of (”7”) points,
in hyperplanes ry = a1,...,2m = agy1. Write
S = S"uS"” where S’ is the union of the points
in z; = a1,...,ay, and S” is the set of points
in z; = agy1. Also, let = : Fm — Fm~1 be
the projection on the first m — 1 coordinates.
By the definition, it follows that both S’ and
w(S") are themselves simplicial configurations,
with S’ of dimension m and order ¢ — 1, and
w(S") of dimension m — 1 and order £.

23



A recurrence

Theorem 4 Let Py(m) be as above and let
S be an fth order simplicial configuration of
(mz-e) points as in the paragraph above. Then
writing p = (p1,...,pm) for points p € (F;)™,

detV(Py(m); S) = =+ |] (pm — ap41)
peS’

.detV(P,_1(m); S
.det V(Py(m — 1); n(S"))

(The recurrence was suggested by a computa-
tion of the determinant in a paper on multivari-
ate interpolation by Chui and Lai, where corre-
sponding sets of points in R™ are identified as
“poised sets” for interpolation by polynomials
of degree bounded bounded by ¢.)

24



An illustrative example

Consider all polynomials of degree < 2 in three
variables and the Vandermonde matrix V(P>(3); S).
For notational simplicity, write points in a 3-
dimensional simplicial configuration S C (F¥)3

of order 2 as (x;,vy;,%2;), for ¢ = 1,...,10 =
(3'52). Here S’ consists of the first four points

in S, and S” consists of the other six points.
Under the hypothesis that S is a simplicial con-
figuration, we have zg =2 = --- = 219 = ¢ for
some c.

25



Cconsequences

Corollary 1 Let Py(m) be as above and let
S be an f¢th order simplicial configuration of
<m2|-£) points. Then detV (P,(m);S) # 0.

Theorem 5 Let ¢/ < q— 1, and let Py(m) be
the simplex in R™ defined above. Then the
minimum distance of the toric code Cp,(,,) IS
given by

A(Crymy) = (g — 1™ — (g — )™

The result on Vandermondes is used to show
d(Cp,(m)) > (g—1)™—£(qg—1)™" ! via Theorem
3. A pigeon-hole principle argument constructs
simplicial configurations S C T for every T with
T| = 4(qg —1)™ + 1. Other inequality comes
from reducibles (zm —a1) ... (xm — ay).
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Concluding Comments

e Can get similar results for other families of
polytopes (e.g. parallelotopes see [1])

e But the results on toric codes from sim-
plices and parallelotopes show that d is of-
ten quite small relative to k.

e It is an interesting problem to determine
criteria for polytopes (or subsets of the lat-
tice points in a polytope) that yield good
evaluation codes.
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