#### Toric Codes

#### John B. Little

Department of Mathematics and Computer Science, College of the Holy Cross

little@mathcs.holycross.edu

Discrete Math Day at Holy Cross

November 11, 2006

#### Outline of Talk

- 1. Coding theory basics
- 2. Toric codes
- 3. Multivariate Vandermonde matrices and estimating the minimum distance
- 4. Codes from simplices

Joint work with Hal Schenck (Texas A+M), and undergrad students (Ryan Schwarz HC '05, Alex Simao, HC '08).

- [1] -, R. Schwarz,  $On\ m$ -dimensional toric codes, arXiv/cs.IT/0506102 (to appear, AAECC)
- [2] -, H. Schenck, *Toric surface codes and Minkowski sums*, arXiv/math.AG/0507598 (to appear, SIAM J. Disc. Math.)

# §1. Coding Theory Basics

A fundamental problem in coding theory is the construction of codes with "good" error-control properties.

- ullet We'll consider "linear block codes" vector subspaces C of  $\mathbb{F}_q^n$  for some n.
- parameters:  $n, k = \dim_{\mathbb{F}_q}(C),$   $d = \min_{x \neq y \in C} d(x,y) = \min_{x \neq 0 \in C} \text{weight}(x)$  (Hamming minimum distance/weight)
- $t = \lfloor \frac{d-1}{2} \rfloor \Rightarrow$  all errors of weight  $\leq t$  can be corrected by "nearest neighbor decoding"
- Good codes: k/n not too small (so not extremely redundant), but at same time d or d/n not too small.

#### Reed-Solomon codes

Pick a primitive element  $\alpha$  for  $\mathbb{F}_q$  (i.e. generator of the cyclic multiplicative group of field), and write the nonzero elements of  $\mathbb{F}_q$  as

$$1, \alpha, \ldots, \alpha^{q-2}$$
.

Let  $L_k = \{ f \in \mathbb{F}_q[x] : \deg f < k \}$ . Then

$$ev: L_k \to \mathbb{F}_q^{q-1}$$

$$f \mapsto (f(1), f(\alpha), \dots, f(\alpha^{q-2}))$$

is linear and one-to-one if k < q. The image is called RS(k,q).

All f of degree < k have at most k-1 roots in  $\mathbb{F}_q$  (and some have exactly that many)

$$\Rightarrow d = (q-1) - (k-1) = n - k + 1.$$

(Singleton bound:  $d \le n - k + 1$ .)

#### An Example

Using the standard monomial basis for  $L_k$ :

$$\{1, x, x^2, x^3, \dots, x^{k-1}\}$$

The Reed-Solomon code RS(3,16) (parameters: n=15, k=3, d=13 over  $\mathbb{F}_{16}$ , so  $16^3=4096$  distinct codewords) has generator matrix:

$$G = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^7 & \alpha^8 & \cdots & \alpha^{14} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{14} & \alpha & \cdots & \alpha^{13} \end{pmatrix}$$

(means: the rows of G form a basis for C = RS(3,16)).

# How Reed - Solomon Codes are Used

Reed-Solomon codes are among the most useful codes in engineering practice in situations where errors tend to occur in "bursts" rather than randomly.

RS(3,16) has d=13, corrects any error vector of weight  $\leq \lfloor \frac{13-1}{2} \rfloor = 6$  in a received word over  $\mathbb{F}_{16} \cong \mathbb{F}_2^4$ . A "burst" of up to 20 consecutive bit errors would affect at most 6 of the symbols of the message thought of as elements of  $\mathbb{F}_{16}$ . RS(3,16) can correct any 20 or fewer consecutive bit errors in a codeword.

Also very efficient algebraic decoding algorithms (Berlekamp-Massey).

Basis for the error-control coding used, for example, in the CD audio system, in communications with deep-space exploration craft like *Voyager*, etc.

#### §2. Toric codes

Introduced by J. Hansen  $\sim$  1997. Elementary description:

- Let P be an integral convex polytope in  $\mathbb{R}^m$ , m>1.
- Points  $\beta$  in the finite set  $P \cap \mathbb{Z}^m$  correspond to monomials  $x^{\beta}$  (multi-index notation)
- Let  $L_P = \operatorname{Span}\{x^{\beta} : \beta \in P \cap \mathbb{Z}^m\}.$
- Define

$$ev: L_P \rightarrow \mathbb{F}_q^{(q-1)^m}$$

$$f \mapsto (f(\gamma): \gamma \in (\mathbb{F}_q^*)^m)$$

Image is the toric code  $C_P(\mathbb{F}_q)$ .

Note RS(k,q) is the case  $P=[0,k-1]\subset \mathbb{R}$  since  $L_k=\operatorname{Span}\{1,x,\ldots,x^{k-1}\}.$ 

# Why are these interesting?

- Have many properties parallel to RS codes, e.g. they are "m-dimensional cyclic" codes (set of codewords is closed under a large automorphism group).
- Computer searches by D. Joyner (USNA)  $\sim 2000$  showed that some very good m=2 toric codes exist (better than any previously known codes in standard databases).
- A number of other isolated very good examples found too.

#### Searching for good toric codes?

**Theorem 1 ([1)** ] Let P, P' be polytopes as above.

- 1. If P and P' are lattice equivalent polytopes then  $C_P(\mathbb{F}_q)$  and  $C_{P'}(\mathbb{F}_q)$  are monomially equivalent codes.
- 2. Similarly, viewing  $[0,q-2]^m \cap \mathbb{Z}^m$  as  $(\mathbb{Z}_{q-1})^m$ , if  $S = P \cap \mathbb{Z}^m$  and S' = T(S) for some  $T = \mathsf{AGL}(m,\mathbb{Z}_{q-1})$ , the resulting evaluation code from S' is monomially equivalent to  $C_P(\mathbb{F}_q)$ .

Monomial equivalence: There is an  $n \times n$  permutation matrix  $\Pi$  and a  $n \times n$  invertible diagonal matrix Q such that  $G' = GQ\Pi$ ; implies that parameters are the same.

Note: In the second case, S' may not be  $P' \cap \mathbb{Z}^m$  for a convex polytope P'.

# Small needles in huge haystacks

For m=3, q=5, for instance, using the usual cycle index polynomial for  $G=\mathrm{AGL}(3,\mathbb{Z}_4)$  we can compute the generating function for the number of G-orbits on subsets of  $\mathbb{Z}_4^3$  of size k:

$$1 + x + 2x^{2} + 4x^{3} + 16x^{4} + 37x^{5} + 147x^{6} + 498x^{7} + 2128x^{8} + 8790x^{9} + 39055x^{10} + 165885x^{11} + 678826x^{12} + 2584627x^{13} + \cdots$$

The "middle term" here is:

$$333347580600x^{32}$$

"Most" of these subsets give quite uninteresting codes. But for instance, *one* of the 2128 orbits of size k=8 consists of codes with d=42 (better than best previously known d=41 according to Brouwer's table). Clearly need some other tools(!)

# Tools from Algebraic Geometry

The case m=2 is connected with the theory of toric surfaces.

Main results of paper *Toric surface codes and* Minkowski sums ([2]) show that for q sufficiently large,  $d(C_P(\mathbb{F}_q))$  can be bounded above and below by looking at subpolygons  $P' \subseteq P$  that decompose as Minkowski sums.

**Theorem 2** Let  $\ell$  be the largest positive integer such that there is some  $P' \subseteq P$  that decomposes as a Minkowski sum  $P' = P_1 + P_2 + \cdots + P_\ell$  with nontrivial  $P_i$ . For all q >> 0, there is some  $P' \subseteq P$  of this form such that

$$d(C_P(\mathbb{F}_q)) \ge \sum_{i=1}^{\ell} d(C_{P_i}(\mathbb{F}_q)) - (\ell-1)(q-1)^2.$$

#### Ideas behind this

The polygon P specifies a normal fan  $\Sigma = \Sigma(P)$ , hence an abstract toric variety  $X = X_{\Sigma}$ , and a line bundle  $\mathcal{L}$  on X. Subpolytopes  $P_i$  correspond to subspaces of  $H^0(X, \mathcal{L})$ .

Minkowski-reducible subpolygons  $\leftrightarrow$  reducible sections (Newton polygon of product of polynomials is a Minkowski sum).

Hasse-Weil upper and lower bounds for a curve Y:

$$|q + 1 - 2g(Y)\sqrt{q} \le |Y(\mathbb{F}_q)| \le q + 1 + 2g(Y)\sqrt{q}$$

 $\Rightarrow$  when q > (a crude but explicit lower bound), reducible curves with  $\ell$  components must have more  $\mathbb{F}_q$ -rational points than those with  $m < \ell$  components.

#### An Example

Consider P as below



$$P \subset [0, q-2]^2$$
 for all  $q \geq 5$ .

Note that P contains

$$P' = \text{conv}\{(1,0), (2,0), (1,2), (2,2)\}$$

$$(= P_1 + P_2 + P_3, P_i \text{ line segments) and}$$

$$P'' = \text{conv}\{(1,0), (1,1), (3,2), (3,3)\}$$

(similar). No other decomposable  $Q \subset P$  with more than three Minkowski summands, and no Minkowski summands with interior lattice points. Theorem 1 above  $\Rightarrow$ 

$$d(C_P(\mathbb{F}_q)) \ge (q-1)^2 - 3(q-1)$$
 for  $q > \#(P) + 3 = 12$ .

#### Example, cont.

Both subpolygons give rise to reducible curves on the corresponding toric surface. From P' we obtain curves x(x-a)(y-b)(y-c)=0. If  $a,b,c\in\mathbb{F}_q^*$  and  $b\neq c$ , then s has 3(q-1)-2 zeroes in  $(\mathbb{F}_q^*)^2$ . Hence,

$$d(C_P(\mathbb{F}_q)) \le (q-1)^2 - 3(q-1) + 2.$$

Computations using Magma show that

$$d(C_P(\mathbb{F}_5)) = 6^{(*)} \quad vs. \quad 4^2 - 3 \cdot 4 + 2 = 6$$

$$d(C_P(\mathbb{F}_7)) = 20 \quad vs. \quad 6^2 - 3 \cdot 6 + 2 = 20$$

$$d(C_P(\mathbb{F}_8)) = 28 \quad vs. \quad 7^2 - 3 \cdot 7 + 2 = 30$$

$$d(C_P(\mathbb{F}_9)) = 42 \quad vs. \quad 8^2 - 3 \cdot 8 + 2 = 42$$

$$d(C_P(\mathbb{F}_{11})) = 72 \quad vs. \quad 10^2 - 3 \cdot 10 + 2 = 72.$$

The dimension is k = #(P) = 9 in each case (\*\*) code over  $\mathbb{F}_5$  is best known for n = 16, k = 9).

#### The case q = 8

We may ask: Where does a codeword with 49-28=21 zero entries come from? Magma: exactly 49 such words. One of them comes, for instance, from the evaluation of

$$x + x^{3}y^{3} + y^{2} \equiv x(1 + x^{2}y^{3} + x^{6}y^{2})$$
$$\equiv x(1 + x^{2}y^{3} + (x^{2}y^{3})^{3})$$

Here congruences are mod  $\langle x^7-1,y^7-1\rangle$ , the ideal of the  $\mathbb{F}_8$ -rational points of the 2-dimensional torus. So  $1+x^2y^3+(x^2y^3)^3$  has exactly the same zeroes in  $(\mathbb{F}_8^*)^2$  as  $x+x^3y^3+y^2$ .

# The case q = 8, continued

 $1+u+u^3$  is one of the two irreducible polynomials of degree 3 in  $\mathbb{F}_2[u]$ , hence

$$\mathbb{F}_8 \cong \mathbb{F}_2[u]/\langle 1+u+u^3 \rangle.$$

If  $\beta$  is a root of  $1 + u + u^3 = 0$  in  $\mathbb{F}_8$ , then  $1 + x^2y^3 + (x^2y^3)^3 =$ 

$$(x^2y^3 - \beta)(x^2y^3 - \beta^2)(x^2y^3 - \beta^4)$$

and there are exactly  $3 \cdot 7 = 21$  points in  $(\mathbb{F}_8^*)^2$  where this is zero. Still a sort of *reducibility* that produces a section with the largest number of zeroes here, even though the reducibility only appears when we look modulo the ideal  $\langle x^7 - 1, y^7 - 1 \rangle$  (!).

Similar phenomena in many other cases for small q.

# §3. Enter the Vandermonde matrices

Now turn to m-dimensional toric codes, any  $m \geq 2$ .

Square submatrices of the generator matrix G for a Reed-Solomon code are usual (one-variable) Vandermonde matrices:

$$V = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha^{j_1} & \alpha^{j_2} & \cdots & \alpha^{j_k} \\ \vdots & \vdots & \ddots & \vdots \\ (\alpha^{j_1})^{k-1} & (\alpha^{j_2})^{k-1} & \cdots & (\alpha^{j_k})^{k-1} \end{pmatrix}$$

(Well-known and standard observation for studying these codes — implies the rows of G are linearly independent, for instance.)

# Multivariate generalizations

Let P be an integral convex polytope, and suppose  $P \cap \mathbb{Z}^m = \{e(i) : 1 \le i \le \#(P)\}$ , listed in some particular order. Let  $S = \{p_j : 1 \le j \le \#(P)\}$  be any set of #(P) points in  $(\mathbb{F}_q^*)^m$ , also ordered.

Define V(P;S), the Vandermonde matrix associated to P and S, to be the  $\#(P) \times \#(P)$  matrix

$$V(P;S) = \left(p_j^{e(i)}\right),\,$$

where  $p_j^{e(i)}$  is the value of the monomial  $x^{e(i)}$  at the point  $p_i$ .

#### An Example

Let  $P = \text{conv}\{(0,0),(2,0),(0,2)\}$  in  $\mathbb{R}^2$ , and  $S = \{(x_j,y_j)\}$  be any set of 6 points in  $(\mathbb{F}_q^*)^2$ . For one particular choice of ordering of the lattice points in P, we have V(P;S) =

| ( 1                                                | 1                | 1                 | 1                 | 1                 | 1 \                                              |
|----------------------------------------------------|------------------|-------------------|-------------------|-------------------|--------------------------------------------------|
| $x_1$                                              | $x_2$            | $x_3$             | $x_{4}$           | $x_5$             | $x_6$                                            |
| $\begin{array}{c c} y_1 \\ x_1^2 \end{array}$      | $y_2$ $x_2^2$    | $y_3 \\ x_3^2$    | $y_4$ $x_4^2$     | $y_5$ $x_5^2$     | $\begin{bmatrix} y_6 \\ x_6^2 \end{bmatrix}$     |
| $ \begin{pmatrix} x_1 y_1 \\ y_1^2 \end{pmatrix} $ | $x_2y_2$ $y_2^2$ | $x_3y_3 \\ y_3^2$ | $x_4y_4 \\ y_4^2$ | $x_5y_5 \\ y_5^2$ | $\begin{pmatrix} x_6 y_6 \\ y_6^2 \end{pmatrix}$ |

# Estimating d of a toric code

We have the following result:

**Theorem 3** Let  $P \subset \mathbb{R}^m$  be an integral convex polytope. Let d be a positive integer and assume that in every set  $T \subset (\mathbb{F}_q^*)^m$  with  $|T| = (q-1)^m - (d-1)$  there exists some  $S \subset T$  with |S| = #(P) such that  $\det V(P;S) \neq 0$ . Then the minimum distance satisfies  $d(C_P) \geq d$ .

Idea of proof: For all S,  $\det V(P;S) \neq 0 \Rightarrow$  the homogeneous linear system obtained the generator matrix, in columns corresponding to S, has only the trivial solution so there are no nonzero codewords with  $(q-1)^m - (d-1)$  zero entries. Hence every nonzero codeword has > d nonzero entries.

# §4. Codes from simplices

Consider  $C_{P_\ell(m)}$  for  $P_\ell(m)$  an m-dimensional simplex of the form

$$P_{\ell}(m) = \operatorname{conv}\{0, \ell \mathbf{e}_1, \dots, \ell \mathbf{e}_m\},\$$

where the  $\mathbf{e}_i$  are the standard basis vectors in  $\mathbb{R}^m$ . The monomials corresponding to the  $\binom{m+\ell}{\ell}$  integer lattice points in  $P_\ell(m)$  are all of the monomials in m variables of total degree  $\leq \ell$ . (The corresponding Vandermonde matrices arise in the study of multivariate Lagrange interpolation using polynomials of bounded total degree.)

# Simplicial configurations — an example

Need to identify S for which  $\det(V(P_{\ell}(m); S)) \neq 0$ .



A 2-dimensional simplicial configuration of order 2 in  $(\mathbb{F}_8^*)^2$ .

#### Definition

**Definition 1** If m=1, an  $\ell$ th order **simplicial configuration** is any collection of  $\binom{1+\ell}{\ell}$  distinct points in  $\mathbb{F}_q^*$ . For  $m\geq 2$ , we will say that a collection S of  $\binom{m+\ell}{\ell}$  points in  $(\mathbb{F}_q^*)^m$  is an m-dimensional  $\ell$ th order **simplicial configuration** if the following conditions hold:

1. For some i,  $1 \le i \le m$ , there are hyperplanes  $x_i = a_1, x_i = a_2, \ldots, x_i = a_{\ell+1}$  such that for each  $1 \le j \le \ell+1$ , S contains exactly  $\binom{m-1+j-1}{j-1}$  points with  $x_i = a_j$ . (Note that

$${m+\ell \choose \ell} = \sum_{j=1}^{\ell+1} {m-1+j-1 \choose j-1}$$

by a standard binomial coefficient identity.)

2. For each j,  $1 \le j \le \ell + 1$ , the points in  $x_i = a_j$  form an (m-1)-dimensional simplicial configuration of order j-1.

#### Some observations

Let S be an m-dimensional  $\ell$ th order simplicial configuration consisting of  $\binom{m+\ell}{\ell}$  points, in hyperplanes  $x_m = a_1, \ldots, x_m = a_{\ell+1}$ . Write  $S = S' \cup S''$  where S' is the union of the points in  $x_i = a_1, \ldots, a_\ell$ , and S'' is the set of points in  $x_i = a_{\ell+1}$ . Also, let  $\pi: \mathbb{F}_q^m \to \mathbb{F}_q^{m-1}$  be the projection on the first m-1 coordinates. By the definition, it follows that both S' and  $\pi(S'')$  are themselves simplicial configurations, with S' of dimension m and order  $\ell-1$ , and  $\pi(S'')$  of dimension m-1 and order  $\ell$ .

#### A recurrence

**Theorem 4** Let  $P_{\ell}(m)$  be as above and let S be an  $\ell$ th order simplicial configuration of  $\binom{m+\ell}{\ell}$  points as in the paragraph above. Then writing  $p=(p_1,\ldots,p_m)$  for points  $p\in(\mathbb{F}_q^*)^m$ ,

$$\det V(P_{\ell}(m); S) = \pm \prod_{p \in S'} (p_m - a_{\ell+1})$$

$$\cdot \det V(P_{\ell-1}(m); S')$$

$$\cdot \det V(P_{\ell}(m-1); \pi(S''))$$

(The recurrence was suggested by a computation of the determinant in a paper on multivariate interpolation by Chui and Lai, where corresponding sets of points in  $\mathbb{R}^m$  are identified as "poised sets" for interpolation by polynomials of degree bounded bounded by  $\ell$ .)

#### An illustrative example

Consider all polynomials of degree  $\leq 2$  in three variables and the Vandermonde matrix  $V(P_2(3);S)$ . For notational simplicity, write points in a 3-dimensional simplicial configuration  $S \subset (\mathbb{F}_q^*)^3$  of order 2 as  $(x_i,y_i,z_i)$ , for  $i=1,\ldots,10=\binom{3+2}{2}$ . Here S' consists of the first four points in S, and S'' consists of the other six points. Under the hypothesis that S is a simplicial configuration, we have  $z_5=z_6=\cdots=z_{10}=c$  for some c.

#### Consequences

**Corollary 1** Let  $P_{\ell}(m)$  be as above and let S be an  $\ell$ th order simplicial configuration of  $\binom{m+\ell}{\ell}$  points. Then  $\det V(P_{\ell}(m);S) \neq 0$ .

**Theorem 5** Let  $\ell < q-1$ , and let  $P_{\ell}(m)$  be the simplex in  $\mathbb{R}^m$  defined above. Then the minimum distance of the toric code  $C_{P_{\ell}(m)}$  is given by

$$d(C_{P_{\ell}(m)}) = (q-1)^m - \ell(q-1)^{m-1}.$$

The result on Vandermondes is used to show  $d(C_{P_{\ell}(m)}) \geq (q-1)^m - \ell(q-1)^{m-1}$  via Theorem 3. A pigeon-hole principle argument constructs simplicial configurations  $S \subset T$  for every T with  $|T| = \ell(q-1)^m + 1$ . Other inequality comes from reducibles  $(x_m - a_1) \dots (x_m - a_\ell)$ .

#### **Concluding Comments**

- Can get similar results for other families of polytopes (e.g. parallelotopes see [1])
- But the results on toric codes from simplices and parallelotopes show that d is often quite small relative to k.
- It is an interesting problem to determine criteria for polytopes (or subsets of the lattice points in a polytope) that yield good evaluation codes.