MATH 357 -- Combinatorics A Computation With the Cycle Index Polynomial April 21, 2017

Say $G = C_8$ acting on the wheel with 8 wedge-shaped sectors. As we just saw

$$Z := \frac{(x1^8 + x2^4 + 2 \cdot x4^2 + 4 \cdot x8)}{8};$$

$$\frac{1}{8} x1^8 + \frac{1}{8} x2^4 + \frac{1}{4} x4^2 + \frac{1}{2} x8$$
(1)

By the **Polya Enumeration Theorem**, to find the number of distinct colorings of the sectors using 3 colors we compute

$$Zsub := subs(\{x1 = c1 + c2 + c3, x2 = c1^2 + c2^2 + c3^2, x4 = c1^4 + c2^4 + c3^4, x8 = c1^8 + c2^8 + c3^8\}, Z);$$

$$\frac{1}{8}(c1 + c2 + c3)^8 + \frac{1}{8}(c1^2 + c2^2 + c3^2)^4 + \frac{1}{4}(c1^4 + c2^4 + c3^4)^2 + \frac{1}{2}c1^8$$

$$+ \frac{1}{2}c2^8 + \frac{1}{2}c3^8$$
(2)

expand(Zsub);

$$c1^{8} + c1^{7} c2 + c1^{7} c3 + 4 c1^{6} c2^{2} + 7 c1^{6} c2 c3 + 4 c1^{6} c3^{2} + 7 c1^{5} c2^{3}$$

$$+ 21 c1^{5} c2^{2} c3 + 21 c1^{5} c2 c3^{2} + 7 c1^{5} c3^{3} + 10 c1^{4} c2^{4} + 35 c1^{4} c2^{3} c3$$

$$+ 54 c1^{4} c2^{2} c3^{2} + 35 c1^{4} c2 c3^{3} + 10 c1^{4} c3^{4} + 7 c1^{3} c2^{5} + 35 c1^{3} c2^{4} c3$$

$$+ 70 c1^{3} c2^{3} c3^{2} + 70 c1^{3} c2^{2} c3^{3} + 35 c1^{3} c2 c3^{4} + 7 c1^{3} c3^{5} + 4 c1^{2} c2^{6}$$

$$+ 21 c1^{2} c2^{5} c3 + 54 c1^{2} c2^{4} c3^{2} + 70 c1^{2} c2^{3} c3^{3} + 54 c1^{2} c2^{2} c3^{4}$$

$$+ 21 c1^{2} c2 c3^{5} + 4 c1^{2} c3^{6} + c1 c2^{7} + 7 c1 c2^{6} c3 + 21 c1 c2^{5} c3^{2}$$

$$+ 35 c1 c2^{4} c3^{3} + 35 c1 c2^{3} c3^{4} + 21 c1 c2^{2} c3^{5} + 7 c1 c2 c3^{6} + c1 c3^{7} + c2^{8}$$

$$+ c2^{7} c3 + 4 c2^{6} c3^{2} + 7 c2^{5} c3^{3} + 10 c2^{4} c3^{4} + 7 c2^{3} c3^{5} + 4 c2^{2} c3^{6} + c2 c3^{7}$$

$$+ c3^{8}$$

$$coeff(coeff(coeff(Zsub, c3), c2^4), c1^3)$$
35
(4)

This is the coefficient of $c1^3 \cdot c2^4 \cdot c3$, which represents the number of distinct ways to color the wheel using three colors, so that exactly three wedges are colored red (color 1), 4 are colored green (color 2), and 1 is colored black (color 3).

The count in this particular case can be seen by **other methods too**, of course to check our work. Since there is only one black wedge, we can rotate it to position 1. Then the other 7 wedges must be colored 3 red and 4 green and they are fixed in

positions 2, ..., 8. (We used the initial rotation to "standardize" the positions to be counted and pick one particular element out of each C_8-equivalence class (one out of

each orbit. The number of ways to color the remaining 7 wedges using two colors is $\binom{7}{3} = \binom{7}{4} = 35$.

binomial(7, 3);