Mathematics 357 - Combinatorics
Solutions for Midterm Examination 1
February 24, 2017
I. Consider a rectangular 7×7 grid L of integer lattice points:

$$
L=\{(i, j): 0 \leq i \leq 6,0 \leq j \leq 6\} \subset \mathbf{R}^{2} .
$$

A) What is the smallest number n such that if we have $S \subset L$ with $|S|=n$, then some three points in S must lie on the same horizontal line $y=c$ for some $0 \leq c \leq 6$.
Solution: (This one should "smell like" the Pigeonhole Principle if you're thinking the right way! Think: "pigeons" $=$ the points in S; "pigeonholes" $=$ the 7 horizontal lines containing points in L. A pigeon goes in a pigeonhole if the point lies on that line.) The smallest such number is 15 . By the Generalized Pigeonhole Principle, if we have 15 points, then some horizontal line must contain strictly more than $\left\lfloor\frac{15-1}{7}\right\rfloor=2$ points. (A subset of 14 points equally distributed with 2 on each horizontal line shows that $|S|=14$ is not large enough.)
B) How many lattice paths are there from $(0,0)$ to $(6,6)$ made up of segments moving either up one unit or right one unit in the lattice?
Solution: By "dividers" or "stars and bars," the number is $\binom{6+6}{6}=\binom{12}{6}=924$.
II. Let $X=\{a, b, c, d, e\}$ and $Y=\{1,2,3,4,5\}$. There are $5^{5}=3125$ functions $f: X \rightarrow Y$ by the Multiplication Principle (5 choices for $f(a), 5$ choices for $f(b)$, etc.)
A) How many of these functions are not surjective (not onto)?

Solution: Since $|X|=|Y|, f: X \rightarrow Y$ is not surjective if and only it is not injective. There are $5!=120$ injective functions, so $3125-5!=3005$ of the functions are not injective and hence not surjective.
B) How many of the functions in part A satisfy $|f(X)|=2$?

Solution: The statement $|f(X)|$ means that the range or image of the function consists of just two of the elements of Y. There are $\binom{5}{2}=10$ choices for the image as a subset of Y. Then for each image, there are 30 different ways to construct mappings with that image. For instance, if the image is $\{1,2\}$, then

- There are $\binom{5}{1}=5$ different functions with one element in X mapping to 1 and four elements in X mapping to 2 , or equivalently $\left|f^{-1}(\{1\})\right|=1$ and $\left|f^{-1}(\{2\})\right|=4$. The element mapping to 1 can be any one of the 5 elements of X, and then the other four elements in X map to 2 .
- Similarly, there $\binom{5}{2}=10$ different functions with $\left|f^{-1}(\{1\})\right|=2$ and $\left|f^{-1}(\{2\})\right|=$ 3
- $\binom{5}{3}=10$ different functions with $\left|f^{-1}(\{1\})\right|=3$ and $\left|f^{-1}(\{2\})\right|=2$
- $\binom{5}{4}=5$ different functions with $\left|f^{-1}(\{1\})\right|=4$ and $\left|f^{-1}(\{2\})\right|=1$. (Note that we cannot have either $\left|f^{-1}(\{1\})\right|=0$ or $\left|f^{-1}(\{1\})\right|=5$ since then we would not be "hitting" one of the elements of $\{1,2\}$ in the image.) By the Multiplication and Addition Principles, then the total number is

$$
\binom{5}{2} \cdot\left(\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}\right)=10 \cdot(5+10+10+5)=300
$$

III. k out of n cars in a lot are selected and each one of those gets an advertising flier for either a pizzeria or a car wash. By counting the ways the selection and distribution of the ads can be done in two ways, give a combinatorial argument establishing:

$$
\binom{n}{0}\binom{n}{k}+\binom{n}{1}\binom{n-1}{k-1}+\binom{n}{2}\binom{n-2}{k-2}+\cdots+\binom{n}{k}\binom{n-k}{0}=2^{k}\binom{n}{k}
$$

Solution: If we choose the cars first, then there are $\binom{n}{k}$ different k-subsets of the n cars on the lot. For each of them, we have 2 choices for the flyer, either the pizzeria flier or the car wash flier. Hence the total number of choices of cars and assignments of fliers is $2^{k}\binom{n}{k}$ by the Multiplication Principle. On the other hand, if we assign the fliers as we select the cars, then the number of selections where

- all chosen cars get car wash fliers is $\binom{n}{0}\binom{n}{k}$
- one chosen car gets a pizzeria flier and the other $k-1$ chosen get car wash fliers is $\binom{n}{1}\binom{n-1}{k-1}$
- two chosen cars get a pizzeria flier and the other $k-2$ chosen get car wash fliers is $\binom{n}{2}\binom{n-2}{k-2}$.
- Similarly, for each $\ell, 0 \leq \ell \leq k$, the term

$$
\binom{n}{\ell}\binom{n-\ell}{k-\ell}
$$

represents the number of ways of picking ℓ cars to get pizzeria fliers, and then picking $k-\ell$ cars from the remaining $n-\ell$ cars to get the car wash fliers.

By the Addition Principle we have

$$
\sum_{\ell=0}^{k}\binom{n}{\ell}\binom{n-\ell}{k-\ell}=2^{k}\binom{n}{k}
$$

IV. A professor makes up a review sheet for an exam including 15 practice questions, subdivided into parts I,II,III, each with 5 questions. The actual exam will consist of exactly 8 different problems out of the 15 practice questions.
A) Taking the ordering of the problems on the actual exam into account, how many different possible exams are there?
Solution: (Note: The subdivision of the review sheet into parts I,II,III is irrelevant for this part.) The total number of exams (ordered) is

$$
P(15,8)=15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8=259459200
$$

B) How many possible exams are there containing at least two questions from each part, if we ignore the order in which the problems are listed?

Solution: We can start by considering the number of ways of writing $8=a_{1}+a_{2}+a_{3}$ where $2 \leq a_{i} \leq 5$ is the number of problems taken from part $i=I, I I, I I I$. If we write $a_{i}=2+b_{i}$, then $2=b_{1}+b_{2}+b_{3}$ and $0 \leq b_{i} \leq 3$. There are clearly only 6 ways to choose the b_{i} :

$$
\left(b_{1}, b_{2}, b_{3}\right) \in\{(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)\}
$$

which correspond to breakdowns of questions between the three parts of the review sheet like this:

$$
\{(4,2,2),(2,4,2),(2,2,4),(3,3,2),(3,2,3),(2,3,3)\}
$$

Then taking into account the actual questions chosen from each part, we have that the total number of exams is

$$
3 \cdot\binom{5}{4} \cdot\binom{5}{2} \cdot\binom{5}{2}+3 \cdot\binom{5}{3} \cdot\binom{5}{3} \cdot\binom{5}{2} .
$$

V.
A) How many permutations are there in S_{16} with cycle type $[4,4,3,3,2]$?

Solution: The number is

$$
\frac{1}{2!}\left(\frac{P(16,4)}{4} \cdot \frac{P(12,4)}{4}\right) \cdot \frac{1}{2!}\left(\frac{P(8,3)}{3} \cdot \frac{P(5,3)}{3}\right) \cdot \frac{P(2,2)}{2}
$$

B) State and prove the recurrence relation for the Stirling numbers of the first kind.

Solution: The recurrence is

$$
s(n+1, k)=n \cdot s(n, k)+s(n, k-1) .
$$

The proof is as follows: $s(n+1, k)$ counts the number of permutations in S_{n+1} with cycle index k. This collection of permutations is the disjoint union of two subsets: The permutations with cycle index k that satisfy $\sigma(n+1)=n+1$ and the ones with $\sigma(n+1) \neq n+1$. In the first case, $(n+1)$ will be a cycle of length 1 in the disjoint cycle decomposition. The remainder then consists of $k-1$ cycles not containing $n+1$. Hence these permutations are in 1-1 correspondence with the permutations in S_{n} with cycle index $k-1$, and that number of such is $s(n, k-1)$. The permutations of the second type are all formed by inserting $n+1$ in one location in a permutation in S_{n} with cycle index k. There are exactly n possible ways to insert the $n+1$, so there are $n \cdot s(n, k)$ of these by the Multiplication Principle. The recurrence relation then follows by the Addition Principle.
C) Using part B and the base cases for the $s(n, 1), s(n, n)$ (or other methods as appropriate), compute the Stirling number of the first kind $s(6,2)$.
Solution: We have, since $s(n, 1)=(n-1)$! and $s(3,2)=3$:

$$
\begin{aligned}
s(6,2) & =5 \cdot s(5,2)+s(5,1) \\
& =5 \cdot(4 \cdot s(4,2)+s(4,1))+24 \\
& =20 \cdot(3 \cdot s(3,2)+s(3,1))+30+24 \\
& =60 \cdot 3+40+30+24 \\
& =274
\end{aligned}
$$

