
Mathematics 357 – Combinatorics
Solutions for Midterm Examination 1

February 24, 2017

I. Consider a rectangular 7 × 7 grid L of integer lattice points:

L = {(i, j) : 0 ≤ i ≤ 6, 0 ≤ j ≤ 6} ⊂ R
2.

A) What is the smallest number n such that if we have S ⊂ L with |S| = n, then some
three points in S must lie on the same horizontal line y = c for some 0 ≤ c ≤ 6.
Solution: (This one should “smell like” the Pigeonhole Principle if you’re thinking
the right way! Think: “pigeons” = the points in S; “pigeonholes” = the 7 horizontal
lines containing points in L. A pigeon goes in a pigeonhole if the point lies on that
line.) The smallest such number is 15. By the Generalized Pigeonhole Principle, if we
have 15 points, then some horizontal line must contain strictly more than ⌊15−1

7
⌋ = 2

points. (A subset of 14 points equally distributed with 2 on each horizontal line shows
that |S| = 14 is not large enough.)

B) How many lattice paths are there from (0, 0) to (6, 6) made up of segments moving
either up one unit or right one unit in the lattice?
Solution: By “dividers” or “stars and bars,” the number is

(

6+6

6

)

=
(

12

6

)

= 924.

II. Let X = {a, b, c, d, e} and Y = {1, 2, 3, 4, 5}. There are 55 = 3125 functions f : X → Y

by the Multiplication Principle (5 choices for f(a), 5 choices for f(b), etc.)
A) How many of these functions are not surjective (not onto)?

Solution: Since |X | = |Y |, f : X → Y is not surjective if and only it is not injective.
There are 5! = 120 injective functions, so 3125 − 5! = 3005 of the functions are not
injective and hence not surjective.

B) How many of the functions in part A satisfy |f(X)| = 2?
Solution: The statement |f(X)| means that the range or image of the function consists
of just two of the elements of Y . There are

(

5

2

)

= 10 choices for the image as a subset
of Y . Then for each image, there are 30 different ways to construct mappings with
that image. For instance, if the image is {1, 2}, then

• There are
(

5

1

)

= 5 different functions with one element in X mapping to 1 and four
elements in X mapping to 2, or equivalently |f−1({1})| = 1 and |f−1({2})| = 4.
The element mapping to 1 can be any one of the 5 elements of X , and then the
other four elements in X map to 2.

• Similarly, there
(

5

2

)

= 10 different functions with |f−1({1})| = 2 and |f−1({2})| =
3

•
(

5

3

)

= 10 different functions with |f−1({1})| = 3 and |f−1({2})| = 2

•
(

5

4

)

= 5 different functions with |f−1({1})| = 4 and |f−1({2})| = 1. (Note that
we cannot have either |f−1({1})| = 0 or |f−1({1})| = 5 since then we would not
be “hitting” one of the elements of {1, 2} in the image.) By the Multiplication
and Addition Principles, then the total number is

(

5

2

)

·

((

5

1

)

+

(

5

2

)

+

(

5

3

)

+

(

5

4

))

= 10 · (5 + 10 + 10 + 5) = 300.



III. k out of n cars in a lot are selected and each one of those gets an advertising flier for
either a pizzeria or a car wash. By counting the ways the selection and distribution of the
ads can be done in two ways, give a combinatorial argument establishing:

(

n

0

)(

n

k

)

+

(

n

1

)(

n − 1

k − 1

)

+

(

n

2

)(

n − 2

k − 2

)

+ · · ·+

(

n

k

)(

n − k

0

)

= 2k

(

n

k

)

Solution: If we choose the cars first, then there are
(

n

k

)

different k-subsets of the n cars on
the lot. For each of them, we have 2 choices for the flyer, either the pizzeria flier or the
car wash flier. Hence the total number of choices of cars and assignments of fliers is 2k

(

n

k

)

by the Multiplication Principle. On the other hand, if we assign the fliers as we select the
cars, then the number of selections where

• all chosen cars get car wash fliers is
(

n

0

)(

n

k

)

• one chosen car gets a pizzeria flier and the other k − 1 chosen get car wash fliers is
(

n

1

)(

n−1

k−1

)

• two chosen cars get a pizzeria flier and the other k − 2 chosen get car wash fliers is
(

n

2

)(

n−2

k−2

)

.
• Similarly, for each ℓ, 0 ≤ ℓ ≤ k, the term

(

n

ℓ

)(

n − ℓ

k − ℓ

)

represents the number of ways of picking ℓ cars to get pizzeria fliers, and then picking
k − ℓ cars from the remaining n − ℓ cars to get the car wash fliers.

By the Addition Principle we have

k
∑

ℓ=0

(

n

ℓ

)(

n − ℓ

k − ℓ

)

= 2k

(

n

k

)

.

IV. A professor makes up a review sheet for an exam including 15 practice questions,
subdivided into parts I,II,III, each with 5 questions. The actual exam will consist of
exactly 8 different problems out of the 15 practice questions.

A) Taking the ordering of the problems on the actual exam into account, how many
different possible exams are there?
Solution: (Note: The subdivision of the review sheet into parts I,II,III is irrelevant
for this part.) The total number of exams (ordered) is

P (15, 8) = 15 · 14 · 13 · 12 · 11 · 10 · 9 · 8 = 259459200.

B) How many possible exams are there containing at least two questions from each part,
if we ignore the order in which the problems are listed?



Solution: We can start by considering the number of ways of writing 8 = a1 + a2 + a3

where 2 ≤ ai ≤ 5 is the number of problems taken from part i = I, II, III. If we
write ai = 2 + bi, then 2 = b1 + b2 + b3 and 0 ≤ bi ≤ 3. There are clearly only 6 ways
to choose the bi:

(b1, b2, b3) ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

which correspond to breakdowns of questions between the three parts of the review
sheet like this:

{(4, 2, 2), (2, 4, 2), (2, 2, 4), (3, 3, 2), (3, 2, 3), (2, 3, 3)}

Then taking into account the actual questions chosen from each part, we have that
the total number of exams is

3 ·

(

5

4

)

·

(

5

2

)

·

(

5

2

)

+ 3 ·

(

5

3

)

·

(

5

3

)

·

(

5

2

)

.

V.
A) How many permutations are there in S16 with cycle type [4, 4, 3, 3, 2]?

Solution: The number is

1

2!

(

P (16, 4)

4
·
P (12, 4)

4

)

·
1

2!

(

P (8, 3)

3
·
P (5, 3)

3

)

·
P (2, 2)

2

B) State and prove the recurrence relation for the Stirling numbers of the first kind.
Solution: The recurrence is

s(n + 1, k) = n · s(n, k) + s(n, k − 1).

The proof is as follows: s(n + 1, k) counts the number of permutations in Sn+1 with
cycle index k. This collection of permutations is the disjoint union of two subsets:
The permutations with cycle index k that satisfy σ(n + 1) = n + 1 and the ones with
σ(n + 1) 6= n + 1. In the first case, (n + 1) will be a cycle of length 1 in the disjoint
cycle decomposition. The remainder then consists of k−1 cycles not containing n+1.
Hence these permutations are in 1-1 correspondence with the permutations in Sn with
cycle index k − 1, and that number of such is s(n, k − 1). The permutations of the
second type are all formed by inserting n + 1 in one location in a permutation in Sn

with cycle index k. There are exactly n possible ways to insert the n + 1, so there
are n · s(n, k) of these by the Multiplication Principle. The recurrence relation then
follows by the Addition Principle.

C) Using part B and the base cases for the s(n, 1), s(n, n) (or other methods as appro-
priate), compute the Stirling number of the first kind s(6, 2).
Solution: We have, since s(n, 1) = (n − 1)! and s(3, 2) = 3:

s(6, 2) = 5 · s(5, 2) + s(5, 1)

= 5 · (4 · s(4, 2) + s(4, 1)) + 24

= 20 · (3 · s(3, 2) + s(3, 1)) + 30 + 24

= 60 · 3 + 40 + 30 + 24

= 274.


