MATH 357 — Combinatorics
Solutions for Problem Set &8
April 21, 2017

7.1.19. Solution 1 — the “brute force” way: Let A be the set of distributions of the 25 gumdrops
where Alice’s requirement is satisfied, B the set where Bob’s requirement is satisfied, etc. We
want to count the number of elements in the complement of the union AU BU C U D. By the
Inclusion-Exclusion Principle,

|[AUBUCUD| = JA|+|B|+|C|+|D|—|AnB|-|AnC|—-|ANnD|—|BNC|—|BNnD|-|CND
+ANBNC|+|ANnBND|+|AnCNnD|+|BNCnND|—|ANnBNCND|.

The total number of ways to distribute the 25 gumdrops is (25; 3) = 3276 (unlabeled balls and
labeled urns).

Then |A| is the coefficient of 2%° in the expansion of ﬁ, which is |A| = 556. |B| is the
coefficient of x2° in m, which is |B| = 1729. |C| is the coefficient of 2° in 1 _””;)4, which is

|C| = 2024. | D] is the coefficient of z?* in W, which is |D| = 1946.
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Finally |[AN BN C N D is the coefficient of 225 in (x+(xls,)§;8t;2§x6), which is 116. So the final

answer is
3276—556—1729—2024—1946+290+384+280+1078+1014+1344—202—144—224—706+116 = 251.

Solution 2 — “the lazy, clever way” — Note: several of you had this idea, one did it completely
correctly this way, others were very close, and a few others were on the right track. In some cases,
something must have gone wrong in entering stuff into Maple because your numerical answer was
not correct — I cannot tell what went wrong without seeing what you entered into Maple, though;
in other papers I couldn’t tell what you meant at first and I had to change the scoring, making a
mess in the process. Sorry for that! But please explain what you are doing so I don’t have to try to

In any case we can also count what we want by counting

|[ANBNCND|
(here A is the complement of A as above inside the set of all distributions; in words it is the set
of distributions where Alice’s requirement is not satisfied, and the others are similar). This count

can be done with a single generating function computation. We want the coefficient of z2° in the
product

A+a*+a®+at+2%+ @+’ +2°+ ) +a+a®+2%) @+ 2%+ )

The first factor has all the 2¥ except = and 2, the second has all but the even exponents, the third
has all the terms z* with k& < 4 and the last has all the terms z* with k& > 6. This way also gives
-+ 2512% + .. so the number we want is 251.

7.3.6. The number is

k—

S(n, k —m) = (k_lm)' Z(—l)i(k;m>(k—m—i)!.

=1

(Think about the terms in the sum Zle S(n, k) for the labeled balls, unlabeled urns, no restrictions
entry in Table 4.6; the second equality comes from the equation at the top of page 211.)

7.3.7. There are (Z) ways to choose the fixed points, and then for each such choice the permutation
must be a derangement of the other n — k numbers. By the Multiplication Principle, the number
of permutations of [n] with exactly k fixed points is

(D

(1) 2e= () w5 5 =555

8.2.12. As permutations of [5], they are first the rotations:

(1)(2)(3)(4)(5), (12345), (13524), (14253), (15432),



then the reflections

(1)(25)(43), (2)(13)(45), (3)(24)(15), (4)(35)(12), (5)(14)(23).

The other information asked for is as follows

g | Inv(g) cyc(g)
DEB@6) | B 5
(12345) \ 0 1
(13524) | ) 1
(14253) | 0 1
(15432) | ) 1
(1)(25)(43) | {1} 3
(2)(13)45) | {2} 3
(3)(24)(15) | {3} 3
(4)(35)(12) | {4} 3
(5)(14)(23) | {5} 3
and
x| st(x)
T | {0@B@0), (1)(5)[@3)}
2 | {L)@B))(5), (2)(13)45)}
31 {W)@)B)4)(5), (3)(24)(15)}
41 {M(2)B)(4)(5), (4)(35)(12)}
5 1 {(MER)B)4)(5), (5)(14)(23)}
8.2.13. Sy contains all the 4! = 24 permutations of [4], which have disjoint cycle decompositions

like this: the identity, then 6 4-cycles
(1)(2)(3)(4), (1234), (1432), (1243), (1342), (1324), (1423)
then 8 products of a 1-cycle and a 3-cycle and 3 products of two 2-cycles
(1)(234), (1)(243), (2)(134), (2)(143), (3) (124), (3)(142), (4)(123), (4)(132), (12)(34), (13)(24). (14)(23),
and finally 6 products of a 2-cycle and two 1-cycles:
(12)(3)(4), (13)(2)(4), (14)(2)(3), (23)(1)(4), (24)(1)(3), (34) (1) (2).

The other information asked for is as follows. Instead of listing all the elements here, I have included
just one of each cycle type:

g | Inv(g) cyc(g)
(ME2)B3)4) | [4] 4
(1234) | 0 1
(D(234) | {1} 2
(12)(34) | 0 2
(12)(3)(4) | {3,4} 3



The stabilizers of each x € [4] look like a copy of S5 sitting inside Sy. For instance:

x| st(x)
41 {(1)(2)(3)(4), (123)(4), (132)(4), (12)(3)(4), (13)(2)(4), (23)(1)(4)}

(If you strip the (4) from the end of each of these permutations, you have the list of 3! elements of

S5.)

8.3.13. We use Burnside’s Lemma:

= {4,5,6}
= {4,5,6}
= {1,2,3}

0
0
= {1,2,3}
0
0

IS
— — Y Y Y

Therefore,
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= §(6+3+3+3+0+0+3+0+0)
= 2.

By examining the form of the cycle decompositions of the elements of G, it is clear that the two
orbits are {1,2,3} and {4,5,6}.



