
MATH 357 – Combinatorics
Solutions for Problem Set 8

April 21, 2017

7.1.19. Solution 1 – the “brute force” way: Let A be the set of distributions of the 25 gumdrops
where Alice’s requirement is satisfied, B the set where Bob’s requirement is satisfied, etc. We
want to count the number of elements in the complement of the union A ∪ B ∪ C ∪ D. By the
Inclusion-Exclusion Principle,

|A ∪B ∪ C ∪D| = |A|+ |B|+ |C|+ |D| − |A ∩B| − |A ∩ C| − |A ∩D| − |B ∩ C| − |B ∩D| − |C ∩D|
+|A ∩B ∩ C|+ |A ∩B ∩D|+ |A ∩ C ∩D|+ |B ∩ C ∩D| − |A ∩B ∩ C ∩D|.

The total number of ways to distribute the 25 gumdrops is
(
25+3

3

)
= 3276 (unlabeled balls and

labeled urns).
Then |A| is the coefficient of x25 in the expansion of x+x5

(1−x)3
, which is |A| = 556. |B| is the

coefficient of x25 in 1
(1−x)3(1−x2)

, which is |B| = 1729. |C| is the coefficient of x25 in x4

1−x)4
, which is

|C| = 2024. |D| is the coefficient of x25 in 1+x+···+x6

(1−x)3
, which is |D| = 1946.

Similarly,

|A ∩B| = coeff. of x25 in
(x+ x5)

(1− x)2(1− x2)
= 290

|A ∩ C| = coeff. of x25 in
(x+ x5)x4

(1− x)3
= 384

|A ∩D| = coeff. of x25 in
(x+ x5)(1 + · · ·+ x6)

(1− x)2
= 280

|B ∩ C| = coeff. of x25 in
x4

(1− x)3(1− x2)
= 1078

|B ∩D| = coeff. of x25 in
1 + · · ·+ x6

(1− x)2(1− x2)
= 1014

|C ∩D| = coeff. of x25 in
(1 + · · ·+ x6)x4

(1− x)3
= 1344.

Then,

|A ∩B ∩ C| = coeff. of x25 in
(x+ x5)x4

(1− x)2(1− x2)
= 202

|A ∩B ∩D| = coeff. of x25 in
(x+ x5)(1 + · · ·+ x6

(1− x)(1− x2)
= 144

|A ∩ C ∩D| = coeff. of x25 in
(x+ x5)x4(1 + · · ·+ x6

(1− x)2
= 224

|B ∩ C ∩D| = coeff. of x25 in
x4(1 + · · ·+ x6)
(1− x)2(1− x2)

= 706.
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Finally |A ∩ B ∩ C ∩D| is the coefficient of x25 in (x+x5)x4(1+···+x6)
(1−x)(1−x2)

, which is 116. So the final
answer is

3276−556−1729−2024−1946+290+384+280+1078+1014+1344−202−144−224−706+116 = 251.

Solution 2 – “the lazy, clever way” – Note: several of you had this idea, one did it completely
correctly this way, others were very close, and a few others were on the right track. In some cases,
something must have gone wrong in entering stuff into Maple because your numerical answer was
not correct – I cannot tell what went wrong without seeing what you entered into Maple, though;
in other papers I couldn’t tell what you meant at first and I had to change the scoring, making a
mess in the process. Sorry for that! But please explain what you are doing so I don’t have to try to
read your mind!!!!!

In any case we can also count what we want by counting

|A ∩B ∩ C ∩D|

(here A is the complement of A as above inside the set of all distributions; in words it is the set
of distributions where Alice’s requirement is not satisfied, and the others are similar). This count
can be done with a single generating function computation. We want the coefficient of x25 in the
product

(1 + x2 + x3 + x4 + x6 + · · · )(x+ x3 + x5 + · · · )(1 + x+ x2 + x3)(x7 + x8 + · · · )

The first factor has all the xk except x and x5, the second has all but the even exponents, the third
has all the terms xk with k < 4 and the last has all the terms xk with k > 6. This way also gives
· · ·+ 251x25 + · · · so the number we want is 251.
7.3.6. The number is

S(n, k −m) =
1

(k −m)!

k−m∑
i=1

(−1)i

(
k −m
i

)
(k −m− i)!.

(Think about the terms in the sum
∑k

i=1 S(n, k) for the labeled balls, unlabeled urns, no restrictions
entry in Table 4.6; the second equality comes from the equation at the top of page 211.)

7.3.7. There are
(
n
k

)
ways to choose the fixed points, and then for each such choice the permutation

must be a derangement of the other n − k numbers. By the Multiplication Principle, the number
of permutations of [n] with exactly k fixed points is(

n

k

)
·Dn−k =

(
n

k

)
· (n− k)!

n−k∑
i=0

(−1)i

i!
=
n!
k!

n−k∑
i=0

(−1)i

i!
.

8.2.12. As permutations of [5], they are first the rotations:

(1)(2)(3)(4)(5), (12345), (13524), (14253), (15432),
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then the reflections

(1)(25)(43), (2)(13)(45), (3)(24)(15), (4)(35)(12), (5)(14)(23).

The other information asked for is as follows

g | Inv(g) cyc(g)
(1)(2)(3)(4)(5) | [5] 5

(12345) | ∅ 1
(13524) | ∅ 1
(14253) | ∅ 1
(15432) | ∅ 1

(1)(25)(43) | {1} 3
(2)(13)(45) | {2} 3
(3)(24)(15) | {3} 3
(4)(35)(12) | {4} 3
(5)(14)(23) | {5} 3

and
x | st(x)
1 | {(1)(2)(3)(4)(5), (1)(25)(43)}
2 | {(1)(2)(3)(4)(5), (2)(13)(45)}
3 | {(1)(2)(3)(4)(5), (3)(24)(15)}
4 | {(1)(2)(3)(4)(5), (4)(35)(12)}
5 | {(1)(2)(3)(4)(5), (5)(14)(23)}

8.2.13. S4 contains all the 4! = 24 permutations of [4], which have disjoint cycle decompositions
like this: the identity, then 6 4-cycles

(1)(2)(3)(4), (1234), (1432), (1243), (1342), (1324), (1423)

then 8 products of a 1-cycle and a 3-cycle and 3 products of two 2-cycles

(1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(132), (12)(34), (13)(24), (14)(23),

and finally 6 products of a 2-cycle and two 1-cycles:

(12)(3)(4), (13)(2)(4), (14)(2)(3), (23)(1)(4), (24)(1)(3), (34)(1)(2).

The other information asked for is as follows. Instead of listing all the elements here, I have included
just one of each cycle type:

g | Inv(g) cyc(g)
(1)(2)(3)(4) | [4] 4

(1234) | ∅ 1
(1)(234) | {1} 2
(12)(34) | ∅ 2

(12)(3)(4) | {3, 4} 3
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The stabilizers of each x ∈ [4] look like a copy of S3 sitting inside S4. For instance:

x | st(x)
4 | {(1)(2)(3)(4), (123)(4), (132)(4), (12)(3)(4), (13)(2)(4), (23)(1)(4)}

(If you strip the (4) from the end of each of these permutations, you have the list of 3! elements of
S3.)

8.3.13. We use Burnside’s Lemma:

Inv(e) = [6]
Inv(π1) = {4, 5, 6}
Inv(π2) = {4, 5, 6}
Inv(π3) = {1, 2, 3}
Inv(π4) = ∅
Inv(π5) = ∅
Inv(π6) = {1, 2, 3}
Inv(π7) = ∅
Inv(π8) = ∅

Therefore,

|{orbits}| =
1
|G|

∑
g∈G

|Inv(g)|

=
1
9

(6 + 3 + 3 + 3 + 0 + 0 + 3 + 0 + 0)

= 2.

By examining the form of the cycle decompositions of the elements of G, it is clear that the two
orbits are {1, 2, 3} and {4, 5, 6}.
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