MATH 357 - Combinatorics
Solutions for Problem Set 8
April 21, 2017
7.1.19. Solution 1 - the "brute force" way: Let A be the set of distributions of the 25 gumdrops where Alice's requirement is satisfied, B the set where Bob's requirement is satisfied, etc. We want to count the number of elements in the complement of the union $A \cup B \cup C \cup D$. By the Inclusion-Exclusion Principle,

$$
\begin{aligned}
|A \cup B \cup C \cup D|= & |A|+|B|+|C|+|D|-|A \cap B|-|A \cap C|-|A \cap D|-|B \cap C|-|B \cap D|-|C \cap D| \\
& +|A \cap B \cap C|+|A \cap B \cap D|+|A \cap C \cap D|+|B \cap C \cap D|-|A \cap B \cap C \cap D| .
\end{aligned}
$$

The total number of ways to distribute the 25 gumdrops is $\binom{25+3}{3}=3276$ (unlabeled balls and labeled urns).

Then $|A|$ is the coefficient of x^{25} in the expansion of $\frac{x+x^{5}}{(1-x)^{3}}$, which is $|A|=556 .|B|$ is the coefficient of x^{25} in $\frac{1}{(1-x)^{3}\left(1-x^{2}\right)}$, which is $|B|=1729 .|C|$ is the coefficient of x^{25} in $\frac{x^{4}}{1-x)^{4}}$, which is $|C|=2024 .|D|$ is the coefficient of x^{25} in $\frac{1+x+\cdots+x^{6}}{(1-x)^{3}}$, which is $|D|=1946$.

Similarly,

$$
\begin{aligned}
& |A \cap B|=\text { coeff. of } x^{25} \text { in } \frac{\left(x+x^{5}\right)}{(1-x)^{2}\left(1-x^{2}\right)}=290 \\
& |A \cap C|=\text { coeff. of } x^{25} \text { in } \frac{\left(x+x^{5}\right) x^{4}}{(1-x)^{3}=384} \\
& |A \cap D|=\text { coeff. of } x^{25} \text { in } \frac{\left(x+x^{5}\right)\left(1+\cdots+x^{6}\right)}{(1-x)^{2}}=280 \\
& |B \cap C|=\text { coeff. of } x^{25} \text { in } \frac{x^{4}}{(1-x)^{3}\left(1-x^{2}\right)}=1078 \\
& |B \cap D|=\text { coeff. of } x^{25} \text { in } \frac{1+\cdots+x^{6}}{(1-x)^{2}\left(1-x^{2}\right)}=1014 \\
& |C \cap D|=\text { coeff. of } x^{25} \text { in } \frac{\left(1+\cdots+x^{6}\right) x^{4}}{(1-x)^{3}}=1344 .
\end{aligned}
$$

Then,

$$
\begin{aligned}
|A \cap B \cap C| & =\text { coeff. of } x^{25} \text { in } \frac{\left(x+x^{5}\right) x^{4}}{(1-x)^{2}\left(1-x^{2}\right)}=202 \\
|A \cap B \cap D| & =\text { coeff. of } x^{25} \text { in } \frac{\left(x+x^{5}\right)\left(1+\cdots+x^{6}\right.}{(1-x)\left(1-x^{2}\right)}=144 \\
|A \cap C \cap D| & =\text { coeff. of } x^{25} \text { in } \frac{\left(x+x^{5}\right) x^{4}\left(1+\cdots+x^{6}\right.}{(1-x)^{2}}=224 \\
|B \cap C \cap D| & =\text { coeff. of } x^{25} \text { in } \frac{x^{4}\left(1+\cdots+x^{6}\right)}{(1-x)^{2}\left(1-x^{2}\right)}=706 .
\end{aligned}
$$

Finally $|A \cap B \cap C \cap D|$ is the coefficient of x^{25} in $\frac{\left(x+x^{5}\right) x^{4}\left(1+\cdots+x^{6}\right)}{(1-x)\left(1-x^{2}\right)}$, which is 116 . So the final answer is
$3276-556-1729-2024-1946+290+384+280+1078+1014+1344-202-144-224-706+116=251$.
Solution 2 - "the lazy, clever way" - Note: several of you had this idea, one did it completely correctly this way, others were very close, and a few others were on the right track. In some cases, something must have gone wrong in entering stuff into Maple because your numerical answer was not correct - I cannot tell what went wrong without seeing what you entered into Maple, though; in other papers I couldn't tell what you meant at first and I had to change the scoring, making a mess in the process. Sorry for that! But please explain what you are doing so I don't have to try to read your mind!!!!!

In any case we can also count what we want by counting

$$
|\bar{A} \cap \bar{B} \cap \bar{C} \cap \bar{D}|
$$

(here \bar{A} is the complement of A as above inside the set of all distributions; in words it is the set of distributions where Alice's requirement is not satisfied, and the others are similar). This count can be done with a single generating function computation. We want the coefficient of x^{25} in the product

$$
\left(1+x^{2}+x^{3}+x^{4}+x^{6}+\cdots\right)\left(x+x^{3}+x^{5}+\cdots\right)\left(1+x+x^{2}+x^{3}\right)\left(x^{7}+x^{8}+\cdots\right)
$$

The first factor has all the x^{k} except x and x^{5}, the second has all but the even exponents, the third has all the terms x^{k} with $k<4$ and the last has all the terms x^{k} with $k>6$. This way also gives $\cdots+251 x^{25}+\cdots$ so the number we want is 251 .
7.3.6. The number is

$$
S(n, k-m)=\frac{1}{(k-m)!} \sum_{i=1}^{k-m}(-1)^{i}\binom{k-m}{i}(k-m-i)!.
$$

(Think about the terms in the sum $\sum_{i=1}^{k} S(n, k)$ for the labeled balls, unlabeled urns, no restrictions entry in Table 4.6 ; the second equality comes from the equation at the top of page 211.)
7.3.7. There are $\binom{n}{k}$ ways to choose the fixed points, and then for each such choice the permutation must be a derangement of the other $n-k$ numbers. By the Multiplication Principle, the number of permutations of $[n]$ with exactly k fixed points is

$$
\binom{n}{k} \cdot D_{n-k}=\binom{n}{k} \cdot(n-k)!\sum_{i=0}^{n-k} \frac{(-1)^{i}}{i!}=\frac{n!}{k!} \sum_{i=0}^{n-k} \frac{(-1)^{i}}{i!} .
$$

8.2.12. As permutations of [5], they are first the rotations:

$$
(1)(2)(3)(4)(5),(12345),(13524),(14253),(15432),
$$

then the reflections

$$
(1)(25)(43),(2)(13)(45),(3)(24)(15),(4)(35)(12),(5)(14)(23) .
$$

The other information asked for is as follows

g	Inv (g)	$\operatorname{cyc}(g)$
$(1)(2)(3)(4)(5)$	$[5]$	5
(12345)	\emptyset	1
(13524)	\emptyset	1
(14253)	\emptyset	1
(15432)	\emptyset	1
$(1)(25)(43)$	$\mid 1\}$	3
$(2)(13)(45)$	$\{2\}$	3
$(3)(24)(15)$	$\{3\}$	3
$(4)(35)(12)$	$\{4\}$	3
$(5)(14)(23)$	$\{5\}$	3

and

x	st (x)
1	$\{(1)(2)(3)(4)(5),(1)(25)(43)\}$
2	$\{(1)(2)(3)(4)(5),(2)(13)(45)\}$
3	$\{(1)(2)(3)(4)(5),(3)(24)(15)\}$
4	$\{(1)(2)(3)(4)(5),(4)(35)(12)\}$
5	$\{(1)(2)(3)(4)(5),(5)(14)(23)\}$

8.2.13. S_{4} contains all the $4!=24$ permutations of [4], which have disjoint cycle decompositions like this: the identity, then 64 -cycles

$$
(1)(2)(3)(4),(1234),(1432),(1243),(1342),(1324),(1423)
$$

then 8 products of a 1 -cycle and a 3 -cycle and 3 products of two 2 -cycles (1) (234), (1) (243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(132), (12)(34), (13)(24), (14)(23), and finally 6 products of a 2 -cycle and two 1 -cycles:

$$
(12)(3)(4),(13)(2)(4),(14)(2)(3),(23)(1)(4),(24)(1)(3),(34)(1)(2) .
$$

The other information asked for is as follows. Instead of listing all the elements here, I have included just one of each cycle type:

g	$\operatorname{Inv}(g)$	$\operatorname{cyc}(g)$
$(1)(2)(3)(4)$	$[4]$	4
(1234)	\emptyset	1
$(1)(234)$	$\{1\}$	2
$(12)(34)$	\emptyset	2
$(12)(3)(4)$	$\{3,4\}$	3

The stabilizers of each $x \in[4]$ look like a copy of S_{3} sitting inside S_{4}. For instance:

$$
\begin{array}{l|c}
x & s t(x) \\
\hline 4 & \{(1)(2)(3)(4),(123)(4),(132)(4),(12)(3)(4),(13)(2)(4),(23)(1)(4)\}
\end{array}
$$

(If you strip the (4) from the end of each of these permutations, you have the list of 3 ! elements of S_{3}.)
8.3.13. We use Burnside's Lemma:

$$
\begin{aligned}
\operatorname{Inv}(e) & =[6] \\
\operatorname{Inv}\left(\pi_{1}\right) & =\{4,5,6\} \\
\operatorname{Inv}\left(\pi_{2}\right) & =\{4,5,6\} \\
\operatorname{Inv}\left(\pi_{3}\right) & =\{1,2,3\} \\
\operatorname{Inv}\left(\pi_{4}\right) & =\emptyset \\
\operatorname{Inv}\left(\pi_{5}\right) & =\emptyset \\
\operatorname{Inv}\left(\pi_{6}\right) & =\{1,2,3\} \\
\operatorname{Inv}\left(\pi_{7}\right) & =\emptyset \\
\operatorname{Inv}\left(\pi_{8}\right) & =\emptyset
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mid\{\text { orbits }\} \mid & =\frac{1}{|G|} \sum_{g \in G}|\operatorname{Inv}(g)| \\
& =\frac{1}{9}(6+3+3+3+0+0+3+0+0) \\
& =2
\end{aligned}
$$

By examining the form of the cycle decompositions of the elements of G, it is clear that the two orbits are $\{1,2,3\}$ and $\{4,5,6\}$.

