MATH 357 – Combinatorics Solutions for Problem Set 8 April 21, 2017

7.1.19. Solution 1 – the "brute force" way: Let A be the set of distributions of the 25 gundrops where Alice's requirement is satisfied, B the set where Bob's requirement is satisfied, etc. We want to count the number of elements in the complement of the union $A \cup B \cup C \cup D$. By the Inclusion-Exclusion Principle,

$$\begin{split} |A \cup B \cup C \cup D| &= |A| + |B| + |C| + |D| - |A \cap B| - |A \cap C| - |A \cap D| - |B \cap C| - |B \cap D| - |C \cap D| \\ &+ |A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| - |A \cap B \cap C \cap D|. \end{split}$$

The total number of ways to distribute the 25 gumdrops is $\binom{25+3}{3} = 3276$ (unlabeled balls and labeled urns).

Then |A| is the coefficient of x^{25} in the expansion of $\frac{x+x^5}{(1-x)^3}$, which is |A| = 556. |B| is the coefficient of x^{25} in $\frac{1}{(1-x)^3(1-x^2)}$, which is |B| = 1729. |C| is the coefficient of x^{25} in $\frac{x^4}{1-x)^4}$, which is |C| = 2024. |D| is the coefficient of x^{25} in $\frac{1+x+\dots+x^6}{(1-x)^3}$, which is |D| = 1946.

Similarly,

$$\begin{aligned} |A \cap B| &= \text{ coeff. of } x^{25} \text{ in } \frac{(x+x^5)}{(1-x)^2(1-x^2)} &= 290 \\ |A \cap C| &= \text{ coeff. of } x^{25} \text{ in } \frac{(x+x^5)x^4}{(1-x)^3} &= 384 \\ |A \cap D| &= \text{ coeff. of } x^{25} \text{ in } \frac{(x+x^5)(1+\dots+x^6)}{(1-x)^2} &= 280 \\ |B \cap C| &= \text{ coeff. of } x^{25} \text{ in } \frac{x^4}{(1-x)^3(1-x^2)} &= 1078 \\ |B \cap D| &= \text{ coeff. of } x^{25} \text{ in } \frac{1+\dots+x^6}{(1-x)^2(1-x^2)} &= 1014 \\ |C \cap D| &= \text{ coeff. of } x^{25} \text{ in } \frac{(1+\dots+x^6)x^4}{(1-x)^3} &= 1344. \end{aligned}$$

Then,

$$\begin{aligned} |A \cap B \cap C| &= \text{ coeff. of } x^{25} \text{ in } \frac{(x+x^5)x^4}{(1-x)^2(1-x^2)} = 202 \\ |A \cap B \cap D| &= \text{ coeff. of } x^{25} \text{ in } \frac{(x+x^5)(1+\dots+x^6}{(1-x)(1-x^2)} = 144 \\ |A \cap C \cap D| &= \text{ coeff. of } x^{25} \text{ in } \frac{(x+x^5)x^4(1+\dots+x^6}{(1-x)^2} = 224 \\ |B \cap C \cap D| &= \text{ coeff. of } x^{25} \text{ in } \frac{x^4(1+\dots+x^6)}{(1-x)^2(1-x^2)} = 706. \end{aligned}$$

Finally $|A \cap B \cap C \cap D|$ is the coefficient of x^{25} in $\frac{(x+x^5)x^4(1+\cdots+x^6)}{(1-x)(1-x^2)}$, which is 116. So the final answer is

3276 - 556 - 1729 - 2024 - 1946 + 290 + 384 + 280 + 1078 + 1014 + 1344 - 202 - 144 - 224 - 706 + 116 = 251.

Solution 2 – "the lazy, clever way" – Note: several of you had this idea, one did it completely correctly this way, others were very close, and a few others were on the right track. In some cases, something must have gone wrong in entering stuff into Maple because your numerical answer was not correct – I cannot tell what went wrong without seeing what you entered into Maple, though; in other papers I couldn't tell what you meant at first and I had to change the scoring, making a mess in the process. Sorry for that! But please explain what you are doing so I don't have to try to read your mind!!!!!

In any case we can also count what we want by counting

 $|\overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D}|$

(here \overline{A} is the complement of A as above inside the set of all distributions; in words it is the set of distributions where Alice's requirement is *not satisfied*, and the others are similar). This count can be done with a single generating function computation. We want the coefficient of x^{25} in the product

$$(1 + x^{2} + x^{3} + x^{4} + x^{6} + \dots)(x + x^{3} + x^{5} + \dots)(1 + x + x^{2} + x^{3})(x^{7} + x^{8} + \dots)$$

The first factor has all the x^k except x and x^5 , the second has all but the even exponents, the third has all the terms x^k with k < 4 and the last has all the terms x^k with k > 6. This way also gives $\dots + 251x^{25} + \dots$ so the number we want is 251. 7.3.6. The number is

$$S(n,k-m) = \frac{1}{(k-m)!} \sum_{i=1}^{k-m} (-1)^i \binom{k-m}{i} (k-m-i)!.$$

(Think about the terms in the sum $\sum_{i=1}^{k} S(n,k)$ for the labeled balls, unlabeled urns, no restrictions entry in Table 4.6; the second equality comes from the equation at the top of page 211.)

7.3.7. There are $\binom{n}{k}$ ways to choose the fixed points, and then for each such choice the permutation must be a derangement of the other n - k numbers. By the Multiplication Principle, the number of permutations of [n] with exactly k fixed points is

$$\binom{n}{k} \cdot D_{n-k} = \binom{n}{k} \cdot (n-k)! \sum_{i=0}^{n-k} \frac{(-1)^i}{i!} = \frac{n!}{k!} \sum_{i=0}^{n-k} \frac{(-1)^i}{i!}.$$

8.2.12. As permutations of [5], they are first the rotations:

(1)(2)(3)(4)(5), (12345), (13524), (14253), (15432),

then the reflections

(1)(25)(43), (2)(13)(45), (3)(24)(15), (4)(35)(12), (5)(14)(23).

The other information asked for is as follows

g	Inv(g)	$\operatorname{cyc}(g)$
(1)(2)(3)(4)(5)	[5]	5
(12345)	Ø	1
(13524)	Ø	1
(14253)	Ø	1
(15432)	Ø	1
(1)(25)(43)	{1}	3
(2)(13)(45)	$\{2\}$	3
(3)(24)(15)	$\{3\}$	3
(4)(35)(12)	$\{4\}$	3
(5)(14)(23)	$\{5\}$	3

and

x	st(x)
1	$\{(1)(2)(3)(4)(5),(1)(25)(43)\}$
2	$\{(1)(2)(3)(4)(5), (2)(13)(45)\}\$
3	$\{(1)(2)(3)(4)(5), (3)(24)(15)\}\$
4	$\{(1)(2)(3)(4)(5), (4)(35)(12)\}\$
5	$\{(1)(2)(3)(4)(5), (5)(14)(23)\}\$

8.2.13. S_4 contains all the 4! = 24 permutations of [4], which have disjoint cycle decompositions like this: the identity, then 6 4-cycles

(1)(2)(3)(4), (1234), (1432), (1243), (1342), (1324), (1423)

then 8 products of a 1-cycle and a 3-cycle and 3 products of two 2-cycles

(1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(132), (12)(34), (13)(24), (14)(23), (14)

and finally 6 products of a 2-cycle and two 1-cycles:

(12)(3)(4), (13)(2)(4), (14)(2)(3), (23)(1)(4), (24)(1)(3), (34)(1)(2).

The other information asked for is as follows. Instead of listing all the elements here, I have included just one of each cycle type:

g	Inv(g)	$\operatorname{cyc}(g)$
(1)(2)(3)(4)	[4]	4
(1234)	Ø	1
(1)(234)	$\{1\}$	2
(12)(34)	Ø	2
(12)(3)(4)	$\{3, 4\}$	3

The stabilizers of each $x \in [4]$ look like a copy of S_3 sitting inside S_4 . For instance:

(If you strip the (4) from the end of each of these permutations, you have the list of 3! elements of $S_{3.}$)

8.3.13. We use Burnside's Lemma:

$$Inv(e) = [6]
Inv(\pi_1) = \{4, 5, 6\}
Inv(\pi_2) = \{4, 5, 6\}
Inv(\pi_3) = \{1, 2, 3\}
Inv(\pi_4) = \emptyset
Inv(\pi_5) = \emptyset
Inv(\pi_6) = \{1, 2, 3\}
Inv(\pi_7) = \emptyset
Inv(\pi_8) = \emptyset$$

Therefore,

$$\begin{aligned} |\{\text{orbits}\}| &= \frac{1}{|G|} \sum_{g \in G} |\text{Inv}(g)| \\ &= \frac{1}{9} (6 + 3 + 3 + 3 + 0 + 0 + 3 + 0 + 0) \\ &= 2. \end{aligned}$$

By examining the form of the cycle decompositions of the elements of G, it is clear that the two orbits are $\{1, 2, 3\}$ and $\{4, 5, 6\}$.