
MATH 357 – Combinatorics
Solutions for Problem Set 6

March 24, 2017

5.3.10. (With modified directions!) There are 13 different ways to spend exactly $15 corresponding
to the partitions of 15 listed below:

15 · 1 (15 drinks)
1 · 3 + 12 · 1 (1 side and 12 drinks, etc.)

2 · 3 + 9 · 1
3 · 3 + 6 · 1
4 · 3 + 3 · 1

5 · 3
1 · 5 + 10 · 1

1 · 5 + 1 · 3 + 7 · 1
1 · 5 + 2 · 3 + 4 · 1
1 · 5 + 3 · 3 + 1 · 1

2 · 5 + 5 · 1
2 · 5 + 1 · 5 + 2 · 1

3 · 5

In terms of generating functions, we want the coefficient of x15 in

1
1− x

· 1
1− x3

· 1
1− x5

,

which is equal to 13, either by direct computation or by using Maple.

As stated, the problem asks for the number of ways to spend at most $15, so we want the sum of
the coefficients of the xi for i = 0, . . . , 15. That number is equal to 87. The easiest way to find
this is to use Maple. The first line computes the generating function, the second line computes the
Taylor series and gets rid of the error term that Maple wants to put in the Taylor series formula,
and the third sets x = 1 to add up the coefficients:

g:=1/(1 - x)*1/(1 - x^3)*1/(1 - x^5);
gp:=convert(taylor(g,x=0,16),polynom);

subs(x=1,gp);

5.3.13. The number is the coefficient of x100 in the Taylor expansion of

1
1− x

· 1
1− x3

· 1
1− x12

· 1
1− x30

,

which is 282 (computed by way of Maple).
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5.3.19, 20, 21. Number 19 was not assigned, but we discussed it in class. Recall that the idea was
that the generating function for the number of distinct partitions of n is

D(x) =
∞∑

n=0

d(n)xn = (1 + x)(1 + x2)(1 + x3) · · · =
∞∏

k=1

(1 + xk).

(Recall, the idea here is that for each k, k either appears in the partition of n or it does not, so
the total number of ways to write n as a sum of distinct integers is the coefficient of xn in the
expansion of this product. This is also needed for question 21 below, which demonstrates a famous
partition identity originally found by Leonhard Euler in 1748. But first, we also need to do 20. Let
o(n) be the number of ways to write n as a sum of odd positive integers. For instance o(5) = 3
since the only partitions of n = 5 where all of the parts are odd are 5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1.
The generating function for the o(n) function is

O(x)
∞∑

n=0

o(n)xn =
1

1− x
· 1

1− x3
· 1

1− x5
· · · =

∞∏
k=0

1
1− x2k+1

.

21. Then using 19 and 20 (and Fact 5.3.1 from the text), we want to show that

D(x) =
∞∏

k=1

(1 + xk) =
∞∏

`=0

1
1− x2`+1

= O(x)

One way to do this is to note that the factor (1 + xk) in D(x) can be written as

1 + xk =
1− x2k

1− xk
.

Hence the product for D(x) can be rewritten as

(1− x2)
(1− x)

· (1− x4)
(1− x2)

· (1− x6)
(1− x3)

· · ·

Canceling factors between the top and the bottom note that all the (1−x2k) (with even exponents)
appear once in the numerator and once in the denominator. Hence everything on the top cancels,
and the terms that are left on the bottom are exactly the (1 − x2`+1) (with odd exponents). But
the product of those factors is exactly O(x) by Problem 5.3.20. Hence D(x) = O(x), and hence
d(n) = o(n) for all n: The number of distinct partitions of n is the same as the number of odd
partitions of n for all n.

5.4.6. The way to approach this is to use the general Inclusion-Exclusion relation with two sets.
As mentioned in the email I sent out before the due date, the first equation should be

x1 + 3x2 + 5x3 + 7x4 = 15.
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If A1 is the set of solutions of the first equation and A2 is the set of solutions of the second, for the
solutions of the first or the second, we want to count |A1 ∪ A2|. By the basic Inclusion-Exclusion
Principle,

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.

Now |A1| is the coefficient of x15 in the expansion of

1
1− x

· 1
1− x3

· 1
1− x5

· 1
1− x7

which is |A1| = 19. Similarly |A2| is the coefficient of x17 in the expansion of

1
1− x3

· 1
1− x4

· 1
1− x6

· 1
1− x2

which is |A2| = 13. Now we count |A1 ∩A2| with the coefficient of u15v17 in the expansion of

1
1− uv3

· 1
1− u3v4

· 1
1− u5v6

· 1
1− u7v2

which is 1 (the unique solution is (x1, x2, x3, x4) = (3, 0, 1, 1)). Therefore the number we want is
19 + 13− 1 = 31.

6.1.14. Refer to Figure 6.1 on page 149. Let Vn be the number of points where two or more lines
come together in the Sierpinski graph Sn. Then V0 = 3, V1 = 6, V2 = 15. To derive a recurrence,
note that in general if n ≥ 1, Sn consists of three copies of Sn−1, glued together in pairs at the
three points that are the corners of the central triangle. This means that Vn = 3Vn−1 − 3 since
3Vn−1 counts each of the “gluing points” twice. This is an inhomogeneous first order recurrence
with constant coefficients.

6.1.15. Let Sn =
∑n

i=1 i3. Then Sn+1 = Sn + (n + 1)3, and S1 = 1 This is an inhomogeneous first
order recurrence with constant coefficients. The (n + 1)3 is a known function of n that makes the
recurrence inhomogeneous.

6.1.18. The recurrence relation is dn+1 = dn + (n + 1), with initial condition d1 = 2. This is an
inhomogeneous first order recurrence with constant coefficients. The way to see this is to think
about the configuration with n lines and dn regions in the plane with boundaries made up of parts
of those lines. Note that each line is subdivided into n intervals (some finite, some infinite) by the
remaining n − 1 lines. Now add the (n + 1)st line. Since no lines are parallel and no three meet
in one point, that new line intersects each of the previous n lines in a single point, and that lies
in one of the n intervals noted before. As a result, exactly n + 1 of the regions we had before are
subdivided into two new regions by the (n + 1)st line. It follows that dn+1 = dn + n + 1. (This
says, for instance that d2 = 4, d3 = 7, d4 = 11, and so forth.
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