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1.5.10. As is true in many cases, there is more than one correct approach on this problem. The
most direct argument is probably this one:

Solution 1: Thinking of the pigeonhole principle, let the pigeons be the n people, and the
pigeonholes be the numbers of people known, which can only be 1, 2, . . . , or n. Arguing by contra-
diction, suppose no two people know the same number of people. Then exactly one person knows
1 person (him- or herself), exactly one person knows 2 people, ... , and exactly one person knows
n people. But this is a contradiction because if one person knows all n people, he must know the
person who only knew one person. But note that the problem said if A knows B then B must also
know A. So that person would have known at least two people including him- or herself.

Solution 2: Here’s another way, using the pigeonhole principle again. Everyone in the group
knows at least him- or herself. If two or more people know only themselves, then we have two
people in the group who know just one person. If there is exactly one person who knows only him
or herself, then the other n − 1 people can know only 2, 3, . . . , n − 2 or n − 1 people. (Noone can
know n people because none of them can know the person who knows only him- or herself.) So we
have n−1 pigeons placed into n−2 pigeonholes, and there must be two people who know the same
number of people. Finally, if everyone knows at least one other person, then they can only only
2, 3, . . . , n people. This gives n pigeons placed in n − 1 pigeonholes again and at least two people
know the same number of people.

1.5.11 (Extra Credit) Consider the “slots” between consecutive men around the table as the pi-
geonholes and the n + 1 women as the pigeons. If any two consecutive slots both have at least one
woman, we have a man seated between two women. The remaining case to consider is where no
two consecutive slots have women. If n is even, this means that only n/2 of the slots could be used.
But the generalized pigeonhole principle (Theorem 1.5.5) implies that some one of those slots has
strictly more than

⌊
(n+1)−1

n/2

⌋
> 2 women. With three women together, a woman is sitting between

two women. If n is odd, there can be at most (n−1)/2 slots that contain women (as long as no two
consecutive slots do). But then again some one of those slots has strictly more than

⌊
(n+1)−1
(n−1)/2

⌋
> 2,

women, so at least 3 women. So some woman is sitting between two other women again.

2.1.14. The set of possible 5-person committees is in 1-1 correspondence with the Cartesian product:

Clergy × Scientists × Lawyers ×Doctors× Lay.

By the Multiplication Principle, the number of possible committees is 8·4·5·3·10 = 4800. Comment:
Notice that the problem does not say to continue and form a second and third committee with the
people who are left over after the first committee is formed.

2.1.15. The number of possible combinations of n toppings is 2n (it’s the same as the collection of
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subsets of the set of toppings). We want the smallest n such that 2n > 1, 000, 000, which is n = 20.

2.1.19. If n is even, the first half of the word can be chosen arbitrarily and that determines the last
half to get a palindrome. This gives 26n/2 different palindromes and hence (Addition Principle)
26n − 26n/2 nonpalindromes, since no word is both a palindrome and a nonpalindrome. Similarly,
if n is odd, then the number is 26n − 26(n+1)/2 since now the middle letter of the word can also be
chosen arbitrarily. Comment: These are two separate cases, so you do not want to combine them.
One is valid if n is an even number; the other is valid if n is odd.

2.1.23. We use the Multiplication Principle for all of these:

(i) There are 9 · 104 five-digit numbers (the leading digit cannot be zero).

(ii) To count numbers that have no two equal digits, there are 9 choices for the leading digit (not
0), then 9 again for the second (which must be different from the first digit, but can be 0),
then 8 for the third, 7 for the fourth, and 6 for the fifth. So there are 9 · 9 · 8 · 7 · 6 = 27216
such five-digit numbers.

(iii) The ones-digit must be either 1, 3, 5, 7, or 9 if the number is odd, then whatever that digit is,
there are 8 choices for the leading digit (not 0 and not equal to the ones-digit), 8 choices for
the second, 7 choices for the third, and 6 choices for the fourth. This gives 8 · 8 · 7 · ·5 = 13440
such numbers.

(iv) Solution 1: By the Addition Principle the number of even numbers with no two equal digits
is equal to the number of all numbers with no two equal digits, minus the number of odd
numbers with no two equal digits, so 27216− 13440 = 13776.

Solution 2: These can also be counted as follows. There are two cases. If the final digit is a
zero, we have 9 ·8 ·7 ·6 ·1 = 3024 numbers ending in zero with no two equal digits. If the final
digit is not zero, then there are four other even numbers it could be, the first digit could be
any one of 8 possibilities, etc. giving 8 · 8 · 7 · 6 · 4 = 10752 possibilities. Then we get the total
number of even numbers with distinct digits by the Addition Principle: 10752+3024 = 13776
as before. (Note that Solution 1 is certainly simpler!)

2.2.7. Let’s take the sentence “No two restaurants serve the same menu” to mean that the menus are
pairwise disjoint (equivalently, no single dish appears on any two different menus). For instance, if
tacos appear on the Mexican menu, they are not also on the American menu. Then by the Addition
Principle, there are 6 + 7 + 10 + 8 = 31 different choices for lunch. (Comment: Just saying the
menus are different is ambiguous here because we can’t really tell whether that means they are just
different as sets, or whether they don’t have any items in common. If they were just different as
sets, we would not have enough information to answer the question!)

2.2.8. By the Multiplication Principle, there are 266 seven-letter words starting with a. (See the
comment in 2.1.19.) Similarly there are 257 words that do not contain a. Since no word appears
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in both collections, by the Addition Principle, the total number is 266 + 257 > 6.4 × 109, a large
number of such words :)

2.2.11. In order to answer this, we need to assume that no one menu item appearing on any
one menu appears on any other menu. That is the sets of appetizers, entrees, and desserts are
all pairwise disjoint. By the Multiplication and Addition Principles, the total number of possible
dinners is

5 · 11 · 4 + 5 · 9 · 6 + 4 · 10 · 8 + 2 · 7 · 5 + 7 · 30 · 9 = 2770.
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