MATH 357 -- Combinatorics

Some Generating Function Computations
 March 17, 2017

These computations show how to determine

1. The number of integer solutions of the equations

$$
\begin{gathered}
x_{_} 1+x_{_} 2+x_{_} 3+2 x_{-} 4=7 \\
2 x_{_} 1+x_{-} 2+4 x_{_} 3+5 x_{_} 4=22
\end{gathered}
$$

2. Then the number of integer solutions of the inequalities:

$$
\begin{gathered}
x_{-} 1+x_{_} 2+x_{_} 3+2 x_{_} 4 \leq 7 \\
2 x_{-} 1+x_{_} 2+4 x_{-} 3+5 \leq 22
\end{gathered}
$$

We'll start with the equalities. Note first that the equalities imply that $x_{-} 1 \leq 7, x_{_} 2 \leq 7, x_{_} 3 \leq 5, x _4 \leq 3$ This means that we only need to consider the truncated generating function:

$$
\begin{aligned}
& \left(1+u \cdot v^{2}+\ldots+\left(u \cdot v^{2}\right)^{7}\right) \cdot\left(1+u \cdot v+\ldots+(u \cdot v)^{7}\right) \cdot\left(1+u \cdot v^{4}+\ldots+\left(u \cdot v^{4}\right)^{5}\right) \cdot\left(1+u^{2} \cdot v^{5}\right. \\
& \left.\quad+\ldots+\left(u^{2} \cdot v^{5}\right)^{3}\right)
\end{aligned}
$$

Here's one way to compute that. We start by creating a function that will expand one of the truncated geometric series:
restart,
geom $:=k \rightarrow \operatorname{sum}\left(x^{i}, i=0 . . k\right)$;

$$
\begin{equation*}
k \rightarrow \sum_{i=0}^{k} x^{i} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& m 12:=\operatorname{subs}\left(x=u \cdot v^{2}, \operatorname{eval}(\operatorname{geom}(7))\right) ; \\
& \tag{2}\\
& u^{7} v^{14}+u^{6} v^{12}+u^{5} v^{10}+u^{4} v^{8}+u^{3} v^{6}+u^{2} v^{4}+u v^{2}+1
\end{align*}
$$

$m 11:=\operatorname{subs}(x=u \cdot v, \operatorname{eval}(\operatorname{geom}(7))) ;$
$m 14:=\operatorname{subs}\left(x=u \cdot v^{4}, \operatorname{eval}(\operatorname{geom}(5))\right)$;
$m 25:=\operatorname{subs}\left(x=u^{2} \cdot v^{5}, \operatorname{eval}(\operatorname{geom}(3))\right) ;$

$$
\begin{gather*}
u^{7} v^{7}+u^{6} v^{6}+u^{5} v^{5}+u^{4} v^{4}+u^{3} v^{3}+u^{2} v^{2}+u v+1 \\
u^{5} v^{20}+u^{4} v^{16}+u^{3} v^{12}+u^{2} v^{8}+u v^{4}+1 \\
u^{6} v^{15}+u^{4} v^{10}+u^{2} v^{5}+1 \tag{3}
\end{gather*}
$$

$g f:=\operatorname{expand}(m 12 \cdot m 11 \cdot m 14 \cdot m 25):$
$\operatorname{coeff}\left(\operatorname{coeff}\left(g f, u^{7}\right), v^{22}\right) ;$
4
So the number of solutions of the equalities is 4 . For the inequalities, we basically want to truncate this generating function again, removing all $u^{m} \cdot \nu^{n}$ where $m>7$ or $n>22$
tgf $:=g f$:
for ito nops($g f$) do
if $\operatorname{degree}(o p(i, g f), u)>7$ or degree (op(i,gf), v) >22 then
$\operatorname{tg} f:=\operatorname{expand}(\operatorname{tgf}-o p(i, g f))$;
end if;
end do:
nops(tgf);

$$
\begin{equation*}
79 \tag{5}
\end{equation*}
$$

tgf,
$4 u^{7} v^{22}+2 u^{7} v^{21}+u^{6} v^{22}+4 u^{7} v^{20}+2 u^{6} v^{21}+6 u^{7} v^{19}+u^{6} v^{20}+4 u^{7} v^{18}$

$$
+2 u^{6} v^{19}+u^{5} v^{20}+6 u^{7} v^{17}+4 u^{6} v^{18}+8 u^{7} v^{16}+2 u^{6} v^{17}+u^{5} v^{18}+5 u^{7} v^{15}
$$

$$
+4 u^{6} v^{16}+2 u^{5} v^{17}+6 u^{7} v^{14}+6 u^{6} v^{15}+u^{5} v^{16}+6 u^{7} v^{13}+4 u^{6} v^{14}+2 u^{5} v^{15}
$$

$$
+u^{4} v^{16}+3 u^{7} v^{12}+5 u^{6} v^{13}+4 u^{5} v^{14}+3 u^{7} v^{11}+6 u^{6} v^{12}+2 u^{5} v^{13}+u^{4} v^{14}
$$

$$
+3 u^{7} v^{10}+3 u^{6} v^{11}+4 u^{5} v^{12}+2 u^{4} v^{13}+u^{7} v^{9}+3 u^{6} v^{10}+5 u^{5} v^{11}+u^{4} v^{12}
$$

$$
+u^{7} v^{8}+3 u^{6} v^{9}+3 u^{5} v^{10}+2 u^{4} v^{11}+u^{3} v^{12}+u^{7} v^{7}+u^{6} v^{8}+3 u^{5} v^{9}+4 u^{4} v^{10}
$$

$$
+u^{6} v^{7}+3 u^{5} v^{8}+2 u^{4} v^{9}+u^{3} v^{10}+u^{6} v^{6}+u^{5} v^{7}+3 u^{4} v^{8}+2 u^{3} v^{9}+u^{5} v^{6}
$$

$$
+3 u^{4} v^{7}+u^{3} v^{8}+u^{5} v^{5}+u^{4} v^{6}+2 u^{3} v^{7}+u^{2} v^{8}+u^{4} v^{5}+3 u^{3} v^{6}+u^{4} v^{4}+u^{3} v^{5}
$$

$$
+u^{2} v^{6}+u^{3} v^{4}+2 u^{2} v^{5}+u^{3} v^{3}+u^{2} v^{4}+u^{2} v^{3}+u v^{4}+u^{2} v^{2}+u v^{2}+u v+1
$$

$\operatorname{subs}(u=1, v=1, \operatorname{tgf})$;

