College of the Holy Cross, Fall Semester, 2015 MATH 133, section 1, Solutions for Midterm 2 Thursday, October 22

1. An object moves along a straight line path with position given by $x(t)=2 t^{3}+t,(t$ in seconds, x in feet).
(a) (5) What is the average velocity of the object on the interval $[1,4]$?

Solution: The average velocity is

$$
v_{\text {ave }}=\frac{x(4)-x(1)}{4-1}=\frac{132-3}{4-1}=43 \mathrm{ft} / \mathrm{sec}
$$

(b) (10) Fill in the following table with average velocities computed over the indicated intervals. Using this information, estimate the instantaneous velocity at $t=1$.

interval	$[1,2]$	$[1,1.1]$	$[1,1.01]$	$[1,1.001]$
ave.vel.	15	7.62	7.0602	7.006002

Estimated instantaneous velocity $=$ probably $7 \mathrm{ft} / \mathrm{sec}$.
2. Answer all parts of this question by referring to the graph $y=f(x)$ [on next page].
(a) (6) $\lim _{x \rightarrow 0^{-}} f(x)=3$ and $\lim _{x \rightarrow 0^{+}} f(x)=1$.
(b) (6) $f(x)$ has an infinite discontinuity at $x=1$ (one-sided infinite discontinuities are possible).
(c) (3) True/False: The limit $\lim _{x \rightarrow-1} f(x)$ does not exist. False - we have $\lim _{x \rightarrow-1} f(x)=4$. The value $f(-1)=3$ does not affect the limit.
(d) (9) $\lim _{x \rightarrow 2^{-}} f(x)=1$ and $\lim _{x \rightarrow 2^{+}} f(x)=1$. Given that $f(2)=1$, what can we say about f at $x=2 ? f$ is continuous at $x=2$.
(e) (6) True/False: $f(x)$ has a removable discontinuity shown in this part of the graph. True. If so, where is it? $x=-1$. The limit exists, but is different from $f(-1)$. That means f has removable discontinuity there.
3. Compute any four of the following limits. (Only the best four will be counted for your total score.)
(a) (10) This is zero/zero as $x \rightarrow 3$, so we try to factor and cancel, then compute the limit by continuity:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{3 x^{2}-9 x} & =\lim _{x \rightarrow 3} \frac{(x-2)(x-3)}{3 x(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{x-2}{3 x} \\
& =\frac{1}{9}
\end{aligned}
$$

(b) (10) This is a zero/zero form with a difference of square roots, so we use the conjugate radical:

$$
\begin{aligned}
\lim _{h \rightarrow 4} \frac{\sqrt{12+h}-\sqrt{16}}{h^{2}-16} & =\lim _{h \rightarrow 4} \frac{(\sqrt{12+h}-\sqrt{16})(\sqrt{12+h}+\sqrt{16})}{\left(h^{2}-16\right)(\sqrt{12+h}+\sqrt{16})} \\
& =\lim _{h \rightarrow 4} \frac{12+h-16}{(h-4)(h+4)(\sqrt{12+h}+\sqrt{16})} \\
& =\lim _{h \rightarrow 4} \frac{h-4}{(h-4)(h+4)(\sqrt{12+h}+\sqrt{16})} \\
& =\lim _{h \rightarrow 4} \frac{1}{(h+4)(\sqrt{12+h}+\sqrt{16})} \\
& =\frac{1}{64} .
\end{aligned}
$$

(c) (10) Use the Limit Product Law and $\lim _{t \rightarrow 0} \frac{\sin (t)}{t}=1$:

$$
\lim _{t \rightarrow 0} \frac{\left(t^{2}+5\right) \sin (t)}{t}=\lim _{t \rightarrow 0}\left(t^{2}+5\right) \lim _{t \rightarrow 0} \frac{\sin (t)}{t}=5 \cdot 1=5 .
$$

(d) (10) For the limit as $x \rightarrow \infty$, multiply the top and bottom by $\frac{1}{x^{3}}$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{3}+3 x+1}{7 x^{3}+x^{2}+4 x} & =\lim _{x \rightarrow \infty} \frac{\left(x^{3}+3 x+1\right) \frac{1}{x^{3}}}{\left(7 x^{3}+x^{2}+4 x\right) \frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{1+\frac{3}{x^{2}}+\frac{1}{x^{3}}}{7+\frac{1}{x}+\frac{4}{x^{2}}} \\
& =\frac{1}{7} .
\end{aligned}
$$

(e) (10) Put the two terms on top over a common denominator, simplify the fraction, then factor and cancel to take the limit:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\frac{1}{x^{2}}-\frac{1}{4}}{x-2} & =\lim _{x \rightarrow 2} \frac{4-x^{2}}{4 x^{2}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{-(x+2)(x-2)}{4 x^{2}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{-(x+2)}{4 x^{2}} \\
& =\frac{-1}{4}
\end{aligned}
$$

4. Let $f(x)=x^{2}+4 x+1$.
(a) (5) What is the slope of the secant line to the graph through the points $(1,6)$ and $(2,13)$?
Solution: The slope is

$$
\frac{13-6}{2-1}=7
$$

(b) (5) Give a general formula for the slope of the secant line through the points $(1,6)$ and $\left(1+h,(1+h)^{2}+4(1+h)+1\right)$.
Solution: The general secant line slope is

$$
m_{s e c}=\frac{(1+h)^{2}+4(1+h)+1-6}{(1+h)-1}=\frac{1+2 h+h^{2}+4 h+4+1-6}{h}=\frac{6 h+h^{2}}{h} .
$$

(c) (5) Find the limit as $h \rightarrow 0$ of your slope from part (b).

Solution: Again a zero/zero form. We can cancel h 's and then use continuity:

$$
\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=\lim _{h \rightarrow 0} 6+h=6
$$

