MATH 133 - Calculus with Fundamentals 1

Logarithm Functions
September 21, 2015

Background

As my high school math teacher Mr. Brennan said, "a logarithm is an exponent." He was a total nerd, but he was right! Of course, this is another way of saying the key property defining the $\log _{b}$ function:

$$
y=\log _{b} x \Longleftrightarrow x=b^{y}
$$

so $\log _{b}\left(b^{y}\right)=y$ for all real y, and $b^{\log _{b}(x)}=x$ for all $x>0$. The most important logarithm function for us is the natural logarithm $\ln (x)$, which is the same as $\log _{e}(x)$ where $e \doteq 2.71828 \cdots$ is (for now) a somewhat mysterious number(!) From the properties of exponents, (see the table on page 41 of our text), we get the key properties of the \ln function:
(1) $\ln \left(x_{1} x_{2}\right)=\ln \left(x_{1}\right)+\ln \left(x_{2}\right)$,
(2) $\ln \left(\frac{x_{1}}{x_{2}}\right)=\ln \left(x_{1}\right)-\ln \left(x_{2}\right)$, and
(3) $\ln \left(A^{B}\right)=B \ln (A)$,
and similarly for $\ln _{b}$ for any $b>0$. Today, we want to practice using these properties of the logarithm functions to simplify expressions and solve equations.

Questions

1) Simplify and compute the value. (Do these without using a calculator!)
(a) $\log _{2}\left(\frac{1}{128}\right)$
(b) $\log _{5}(125)$
(c) $\ln \left(e^{4}\right)+\ln \left(\frac{1}{e^{5}}\right)$
2) Solve each of these equations for the unknown by using properties of logarithms. Get an exact answer (expressed using logarithms), then find a decimal approximation using a calculator.
(a) $e^{5 x+1}=2$.
(b) $2^{2 x}=3^{3 x-5}$.
(c) $e^{2 t+1}=7^{t-4}$
3) (a) Explain why $f(x)=e^{2(x-1)}+1$ has an inverse function. (Hint: What is the property that says a function has an inverse function? Sketch the graph $y=e^{2(x-1)}+1$ to see that this function "has it.")
(b) Find a formula for f^{-1} for the function from part (a). Sketch the graph $y=f^{-1}(x)$ on the same axes as you had in part (a).
