MATH 133 - Calculus with Fundamentals 1

The Derivative Function, part 2
October 23, 2015

Background

On Tuesday, we were working with the derivative of a function f at x :

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists. With today's video we know the following facts about derivatives
(1) If $f(x)=x^{n}$ for any number n, then $f^{\prime}(x)=n x^{n-1}$.
(2) If $f^{\prime}(x)$ exists, then $(k f)^{\prime}(x)$ exists and $(k f)^{\prime}(x)=k f^{\prime}(x)$.
(3) If $f^{\prime}(x)$ and $g^{\prime}(x)$ both exist, then so does $(f+g)^{\prime}(x)$, and $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$.
(4) If $f(x)=e^{x}$, then $f^{\prime}(x)=e^{x}$ (that's right, it's the same function(!))

Questions

(1) Compute $f^{\prime}(x)$ for $f(x)=x^{7}+2 e^{x}$.
(2) Compute $f^{\prime}(x)$ for $f(x)=x^{4}+3 e^{x}+7+2 x^{-1}$.
(3) Make up your own example function of the same type as the one in (2) and compute $f^{\prime}(x)$ using points (1), (2) and (3) in the Background.
(4) What is $f^{\prime}(x)$ if $f(x)=e^{\pi}$? (Be careful!)

The video for today gave the idea for showing point (4) in the Background because for any exponential function $f(x)=b^{x}$,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{b^{x+h}-b^{x}}{h}=b^{x} \lim _{h \rightarrow 0} \frac{b^{h}-1}{h} .
$$

We said that $b=e$ was the base for the exponential that made

$$
\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=1 .
$$

(5) Take $b=2.7$ and estimate $\lim _{h \rightarrow 0} \frac{(2.7)^{h}-1}{h}$ numerically. Then repeat with and $b=2.8$ and estimate the limit $\lim _{h \rightarrow 0} \frac{(2.8)^{h}-1}{h}$. What do you conclude about the number e ?
(6) Now repeat part (5) with $b=2.75$. Is e in the interval $[2.7,2.5]$ or [2.75, 8$]$? Note that you could repeat this process over and over to zero in on the decimal expansion of the number e.

