MATH 133 - Calculus with Fundamentals 1

The Derivative Function
October 20, 2015

Background

Recall that last time, we introduced the derivative of a function f at x :

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists.
In today's video we introduced the idea of deriving formulas for $f^{\prime}(x)$ for a general x , and considering f^{\prime} as a new function in its own right. We said:
(1) If $f(x)=x^{n}$ for any number n, then $f^{\prime}(x)=n x^{n-1}$.
(2) If $f^{\prime}(x)$ exists, then so does $(k f)^{\prime}(x)$ and $(k f)^{\prime}(x)=k f^{\prime}(x)$.
(3) If $f^{\prime}(x)$ and $g^{\prime}(x)$ both exist, then so does $(f+g)^{\prime}(x)$, and $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$.

Questions

(1) Compute $f^{\prime}(x)$ for $f(x)=x^{5 / 3}$ using point (1) in the Background above.
(2) Compute $f^{\prime}(x)$ for $f(x)=x^{4}+5 x^{2}+7+2 x^{-3}$ using points (1), (2), and (3) in the Background above.
(3) Make up your own example function of the same type as the one in (2) and compute $f^{\prime}(x)$ using points (1), (2), and (3) in the Background.
(4) What is $f^{\prime}(x)$ if $f(x)=\pi^{\pi}$? (Be careful!)

The video for today gave the idea for showing point (1) in the Background when n is a positive integer, and stated that the same formula works for all n. Let's verify this in some special cases.
(5) Verify the formula in point (1) for $f(x)=x^{4}$. That is, you want to show $f^{\prime}(x)=4 x^{3}$ using the definition of $f^{\prime}(x)$.
(6) Verify the formula in point (1) for $f(x)=\sqrt{x}=x^{1 / 2}$. That is, you want to show $f^{\prime}(x)=$ $\frac{1}{2} x^{-1 / 2}$ using the definition of $f^{\prime}(x)$.
(7) Verify the formula in point (1) for $f(x)=\frac{1}{x^{2}}=x^{-2}$. That is, you want to show $f^{\prime}(x)=-2 x^{-3}$ using the definition of $f^{\prime}(x)$.
(8) Why does point (2) in the background work? Explain in terms of the limit definition, and in terms of how the graphs $y=f(x)$ and $y=k f(x)$ are related.

Finally, it is important to realize that the limit in the definition of $f^{\prime}(x)$ can fail to exist at some of the x in the domain of f.
(9) Consider $y=|x|$ (the absolute value function). Does

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{|h|-0}{h}
$$

exist? Why or why not? Does this make sense in terms of the graph $y=|x|$?

