MATH 133 - Calculus with Fundamentals 1
 The Derivative of a Function

October 19, 2015

Background

We are now ready to begin Chapter 3 in our textbook. In the video for today's class, we introduced the derivative of a function f at $x=a$ in the domain of f :

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a},
$$

provided the limit exists. If the limit does exist, then by what we said in Section 2.1, $f^{\prime}(a)$ will give the slope of the tangent line to the graph $y=f(x)$ at the point $(a, f(a))$. If x represents time, and $f(x)$ is a position, then $f^{\prime}(a)$ would be the instantaneous velocity.

All the techniques we learned in Chapter 2 for computing indeterminate form limits were, in fact, set up to compute the limits giving $f^{\prime}(a)(!)$ Let's practice (and review) some of those techniques!

Questions

(1) Compute $f^{\prime}(1)$ for $f(x)=x^{3}+2 x+1$ and use your result to find the equation of the tangent line to the graph $y=x^{3}+2 x+1$ at the point $(1,4)$.
(2) Compute $f^{\prime}(3)$ for $f(x)=\sqrt{x+1}$ and use your result to find the equation of the tangent line to the graph $y=\sqrt{x+1}$ at the point $(3,2)$.
(3) Compute $f^{\prime}(2)$ for $f(x)=\frac{1}{x}$ and use your result to find the equation of the tangent line to the graph $y=\frac{1}{x}$ at the point $(2,1 / 2)$.

We will now concentrate on finding general formulas for derivatives.
(4) Adapt what you did in question (1) above to compute $f^{\prime}(a)$-the derivative at a general $x=a$ for $f(x)=x^{3}+2 x+1$.
(5) Adapt what you did in question (2) above to compute $f^{\prime}(a)$-the derivative at a general $x=a$ for $f(x)=\sqrt{x+1}$. Here there is a restriction on which a "work." What is that restriction? Does this make sense, thinking of the graph $y=\sqrt{x+1}$? (Note: this is part of the parabola with equation $x=y^{2}-1$.)
(6) Adapt what you did in question (3) above to compute $f^{\prime}(a)$-the derivative at a general $x=a$ for $f(x)=\frac{1}{x}$. Does your formula make sense, thinking of the shape of the graph $y=\frac{1}{x}$? In particular, what is true about $f^{\prime}(a)$ if a is very close to zero? And what about a very large in absolute value?

